This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369414 #19 Jan 25 2024 14:31:32 %S A369414 1,2,4,8,5,16,13,10,7,32,29,26,23,20,17,14,11,64,61,58,55,52,49,46,43, %T A369414 40,37,34,31,28,25,22,19,128,125,122,119,116,113,110,107,104,101,98, %U A369414 95,92,89,86,83,80,77,74,71,68,65,62,59,56,53,50,47,44,41,38,35 %N A369414 Irregular triangle read by rows: row n lists the values of the vertices at the n-th level of the MI graph (see comments). %C A369414 The vertices of the graph consist of all of the positive integers that are not divisible by 3. A vertex v (for v >= 4) has 2*v as left child and 2*v - 3 as right child (see example). %C A369414 Matos and Antunes (1998) use this graph to illustrate the fact that, for a string (theorem) S belonging to the MIU formal system containing no U characters, the length of the path from vertex v (where v is the number of I characters in S) to the root corresponds to the number of times step 2 of their algorithm for generating "normal" proofs (described in A369409) is applied. %C A369414 See A368946 for the description of the MIU formal system. %D A369414 Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41. %H A369414 Paolo Xausa, <a href="/A369414/b369414.txt">Table of n, a(n) for n = 0..16384</a> (rows 0..15 of the triangle, flattened). %H A369414 Armando B. Matos and Luis Filipe Antunes, <a href="https://www.researchgate.net/publication/2845974_Short_proofs_for_MIU_theorems">Short Proofs for MIU theorems</a>, Technical Report Series DCC-98-01, University of Porto, 1998. %H A369414 Wikipedia, <a href="https://en.wikipedia.org/wiki/MU_puzzle">MU Puzzle</a>. %H A369414 <a href="/index/Go#GEB">Index entries for sequences from "Goedel, Escher, Bach"</a>. %F A369414 T(n,1) = n + 1 for n < 2. %F A369414 T(n,k) = 2^n - 3*(k-1) for n >= 2 and 1 <= k <= 2^(n-2). %e A369414 The first levels of the graph are shown below. Cf. Matos and Antunes (1998), p. 7, figure 1. %e A369414 +--1 %e A369414 | %e A369414 +--2 %e A369414 | %e A369414 +-----------4-----------+ %e A369414 | | %e A369414 +-----8-----+ +-----5-----+ %e A369414 | | | | %e A369414 +-16--+ +-13--+ +-10--+ +--7--+ %e A369414 | | | | | | | | %e A369414 32 29 26 23 20 17 14 11 %e A369414 ... %e A369414 Written as an irregular triangle, the sequence begins: %e A369414 [0] 1; %e A369414 [1] 2; %e A369414 [2] 4; %e A369414 [3] 8 5; %e A369414 [4] 16 13 10 7; %e A369414 [5] 32 29 26 23 20 17 14 11; %e A369414 ... %t A369414 A369414row[n_] := If[n <= 1, {n+1}, Range[2^n, 3+2^(n-2), -3]]; %t A369414 Array[A369414row, 8, 0] %Y A369414 Cf. A368946, A369409. %Y A369414 Cf. A000079 (first column and, for n >= 2, row lengths), A062709 (right border, for n >= 2). %Y A369414 Permutation of A001651. %K A369414 nonn,tabf,easy %O A369414 0,2 %A A369414 _Paolo Xausa_, Jan 24 2024