cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A369374 Powerful numbers k that have a primorial kernel and more than 1 distinct prime factor.

Original entry on oeis.org

36, 72, 108, 144, 216, 288, 324, 432, 576, 648, 864, 900, 972, 1152, 1296, 1728, 1800, 1944, 2304, 2592, 2700, 2916, 3456, 3600, 3888, 4500, 4608, 5184, 5400, 5832, 6912, 7200, 7776, 8100, 8748, 9000, 9216, 10368, 10800, 11664, 13500, 13824, 14400, 15552, 16200
Offset: 1

Views

Author

Michael De Vlieger, Jan 22 2024

Keywords

Comments

Numbers k such that Omega(k) > omega(k) > 1 with all prime power factors p^m for m > 1, such that squarefree kernel rad(k) is in A002110, where Omega = A001222, omega = A001221, and rad(k) = A007947(k).
Union of the product of the squares of primorials P(n)^2, n > 1, and the set of prime(n)-smooth numbers.
Superset of A364930.
Proper subset of A367268, which in turn is a proper subset of A126706.

Examples

			This sequence is the union of the following infinite sets:
P(2)^2 * A003586 = {36, 72, 108, 144, 216, 288, 324, ...}
                 = { m*P(2)^2 : rad(m) | P(2) }.
P(3)^2 * A051037 = {900, 1800, 2700, 3600, 4500, 5400, ...}
                 = { m*P(3)^2 : rad(m) | P(3) }.
P(4)^2 * A002473 = {44100, 88200, 132300, 176400, ...}
                 = { m*P(4)^2 : rad(m) | P(4) }, etc.
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 2^14},
      Select[
        Select[Rest@ Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}],
          Not@*PrimePowerQ],
        And[EvenQ[#],
          Union@ Differences@ PrimePi[FactorInteger[#][[All, 1]]] == {1}] &] ]

Formula

{a(n)} = { m*P(n)^2 : P(n) = Product_{j = 1..n} prime(n), rad(m) | P(n), n > 1 }.
Intersection of A286708 and A055932.
A286708 is the union of A369417 and this sequence.

A369636 Powerful numbers k that are neither prime powers nor products of primorials.

Original entry on oeis.org

100, 108, 196, 200, 225, 324, 392, 400, 441, 484, 500, 648, 675, 676, 784, 800, 968, 972, 1000, 1089, 1125, 1156, 1225, 1323, 1352, 1372, 1444, 1521, 1568, 1600, 1764, 1936, 1944, 2000, 2025, 2116, 2312, 2500, 2601, 2700, 2704, 2744, 2888, 2916, 3025, 3087, 3136
Offset: 1

Views

Author

Michael De Vlieger, Jan 28 2024

Keywords

Comments

Proper subset of A367268 which is in turn a proper subset of A080259.
Superset of A369417.

Examples

			Let P(n) = A002110(n).
36 = 6^2 = P(2)^2 is a product of primorials and not in the sequence.
72 = 2 * 6^2 = P(1) * P(2)^2 is a product of primorials and not in the sequence.
a(1) = 100 = 2^2 * 5^2 is not a product of primorials.
a(2) = 108 = 2^2 * 3^3 is not a product of primorials, etc.
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 3200}, Select[
     Select[
       Rest@ Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}],
       Not@*PrimePowerQ],
     Nand[EvenQ[#1], Union@ Differences@ PrimePi[#2[[All, 1]]] == {1},
       AllTrue[Differences@ #2[[All, -1]], # <= 0 &]] & @@
       {#, FactorInteger[#]} &] ]

Formula

{a(n)} = A286708 \ A025487.

A380456 Perfect powers k^m, m > 1, omega(k) > 1, such that A053669(k) < A006530(k), where omega = A001221.

Original entry on oeis.org

100, 196, 225, 400, 441, 484, 676, 784, 1000, 1089, 1156, 1225, 1444, 1521, 1600, 1764, 1936, 2025, 2116, 2500, 2601, 2704, 2744, 3025, 3136, 3249, 3364, 3375, 3844, 3969, 4225, 4356, 4624, 4761, 4900, 5476, 5625, 5776, 5929, 6084, 6400, 6724, 7056, 7225, 7396
Offset: 1

Views

Author

Michael De Vlieger, Jul 25 2025

Keywords

Comments

Perfect powers k^m, m > 1, for composite k in A080259.

Examples

			Table of n, a(n) for n = 1..12:
 n    a(n)
-----------------------------
 1    100 = 10^2 = 2^2 *  5^2
 2    196 = 14^2 = 2^2 *  7^2
 3    225 = 15^2 = 3^2 *  5^2
 4    400 = 20^2 = 2^4 *  5^2
 5    441 = 21^2 = 3^2 *  7^2
 6    484 = 22^2 = 2^2 * 11^2
 7    676 = 26^2 = 2^2 * 13^2
 8    784 = 28^2 = 2^4 *  7^2
 9   1000 = 10^3 = 2^3 *  5^3
10   1089 = 33^2 = 3^2 * 11^2
11   1156 = 34^2 = 2^2 * 17^2
12   1225 = 35^2 = 5^2 *  7^2
		

Crossrefs

Programs

  • Mathematica
    a053669[x_] := Block[{q = 2}, While[Divisible[x, q], q = NextPrime[q] ], q]; nn = 2^13; Select[Union@ Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}], And[a053669[#1] < #2[[-1, 1]], GCD @@ #2[[;; , -1]] > 1] & @@ {#, FactorInteger[#]} &]

Formula

Intersection of A131605 and A080259 = A131605 \ A055932 = A131605 \ A380446.
Showing 1-3 of 3 results.