cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369419 Numbers k that are neither squarefree nor prime powers such that A119288(k) <= k/A007947(k) < A053669(k) and A007947(k) is not a primorial.

Original entry on oeis.org

18, 90, 150, 630, 1050, 1470, 1890, 2100, 6930, 11550, 16170, 20790, 23100, 25410, 90090, 150150, 210210, 270270, 300300, 330330, 390390, 420420, 450450, 1531530, 2552550, 3573570, 4594590, 5105100, 5615610, 6636630, 7147140, 7657650, 8678670, 9189180, 29099070
Offset: 1

Views

Author

Michael De Vlieger, Mar 10 2024

Keywords

Examples

			Seen as an irregular triangle T(n,k) of rows n where T(n,k) = P(n)*k, and k < prime(n+1) is in A369361.
n\k    3       5       7       9      10      11
------------------------------------------------
2:    18;
3:    90,    150;
4:   630,   1050,   1470,   1890,   2100;
5:  6930,  11550,  16170,  20790,  23100,  25410;
    ...
		

Crossrefs

Programs

  • Mathematica
    P = 2; nn = 8;
    s = Select[Range[3, Prime[nn+1]],
      Nor[IntegerQ@ Log2[#],
          And[EvenQ[#1], Union@ Differences@ PrimePi[#2[[All, 1]]] == {1},
              AllTrue[Differences@ #2[[All, -1]], # <= 0 &]]] & @@
        {#, FactorInteger[#]} &];
    Table[P *= Prime[n]; P*TakeWhile[s, # < Prime[n + 1] &], {n, 2, nn}]

Formula

This sequence is { k = m*P(i) : 3 <= m < prime(i), i > 1, m in A369361 }.
Intersection of A364998 and A056808.