cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369427 The number of unitary divisors of n that are squares of primes.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Jan 23 2024

Keywords

Comments

The number of exponents in the prime factorization of n that are equal to 2.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2, 1, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecsum(apply(x -> if(x == 2, 1, 0), factor(n)[, 2]));

Formula

Additive with a(p^e) = 1 if e = 2, and 0 otherwise.
a(n) > 0 if and only if n is in A038109.
a(A061742(n)) = n, and a(k) < n for all k < A061742(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} (1/p^2 - 1/p^3) = A085548 - A085541 = 0.27748478074162196208... .