cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369432 Number of Dyck excursions with catastrophes from (0,0) to (n,0).

This page as a plain text file.
%I A369432 #18 Jul 24 2025 10:51:55
%S A369432 1,1,3,6,16,37,95,230,582,1434,3606,8952,22446,55917,140007,349374,
%T A369432 874150,2183230,5460506,13643972,34118328,85270626,213205958,
%U A369432 532926716,1332420796,3330739972,8327221380,20816939100,52043684970,130105200765,325267849335,813155081070
%N A369432 Number of Dyck excursions with catastrophes from (0,0) to (n,0).
%C A369432 A Dyck excursion is a lattice path with steps U = (1,1) and D = (1,-1) that does not go below the x-axis and ends at the x-axis.
%C A369432 A catastrophe is a step C = (1,-k) from altitude k to altitude 0 for k >= 0.
%H A369432 Alois P. Heinz, <a href="/A369432/b369432.txt">Table of n, a(n) for n = 0..2514</a>
%H A369432 Cyril Banderier and Michael Wallner, <a href="https://arxiv.org/abs/1707.01931">Lattice paths with catastrophes</a>, arXiv:1707.01931 [math.CO], 2017, p.7.
%F A369432 G.f.: (1 - sqrt(1 - 4*z^2))*(2*z - 1)/(z^2*(6*z - 3 + sqrt(1 - 4*z^2))).
%F A369432 a(n) ~ 3/8*(5/2)^n.
%e A369432 For n = 3 the a(3) = 6 solutions are UUC, UDC, UCC, CUD, CUC, CCC.
%e A369432 For n = 4 the a(4) = 16 solutions are UUUC, UUDD, UUDC, UUCC, UDUD, UDUC, UDCC, UCUD, UCUC, UCCC, CUUC, CUDC, CUCC, CCUD, CCUC, CCCC.
%p A369432 u1 := solve(1 - z*(1/u + u), u)[2];
%p A369432 M := (1 - u1)/(1 - 2*z);
%p A369432 E := u1/z;
%p A369432 F := E/(-M*z + 1);
%p A369432 series(F, z, 33);
%p A369432 # second Maple program:
%p A369432 b:= proc(x, y) option remember; `if`(x=0, `if`(y=0, 1, 0),
%p A369432       b(x-1, 0)+`if`(y>0, b(x-1, y-1), 0)+b(x-1, y+1))
%p A369432     end:
%p A369432 a:= n-> b(n, 0):
%p A369432 seq(a(n), n=0..31);  # _Alois P. Heinz_, Jan 23 2024
%t A369432 b[x_, y_] := b[x, y] = If[x == 0, If[y == 0, 1, 0], b[x-1, 0] + If[y > 0, b[x-1, y-1], 0] + b[x-1, y+1]];
%t A369432 a[n_] := b[n, 0];
%t A369432 Table[a[n], {n, 0, 31}] (* _Jean-François Alcover_, Jul 24 2025, after _Alois P. Heinz_ *)
%o A369432 (PARI) my(N=44,z='z+O('z^N)); Vec((1 - sqrt(1 -4*z^2))*(2*z - 1)/(z^2*(6*z - 3 + sqrt(1 - 4*z^2))))
%Y A369432 Cf. A054341 (Dyck meanders with catastrophes).
%Y A369432 Cf. A224747 (different model of catastrophes).
%K A369432 nonn,walk
%O A369432 0,3
%A A369432 _Florian Schager_, Jan 23 2024