cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369438 a(n) = [x^(n^3)] Product_{k=1..n} (x^(k^3) + 1 + 1/x^(k^3)).

This page as a plain text file.
%I A369438 #9 Jan 24 2024 12:17:28
%S A369438 1,1,1,1,1,1,2,3,4,11,24,46,106,238,537,1318,3007,7027,18199,43202,
%T A369438 105900,279860,688474,1741235,4641670,11790546,30529486,82306963,
%U A369438 213852619,563866091,1531711961,4047719392,10835966180,29624064007,79423421277,215083283638
%N A369438 a(n) = [x^(n^3)] Product_{k=1..n} (x^(k^3) + 1 + 1/x^(k^3)).
%p A369438 b:= proc(n, i) option remember; `if`(n>(i*(i+1)/2)^2, 0,
%p A369438      `if`(i=0, 1, b(n, i-1)+b(n+i^3, i-1)+b(abs(n-i^3), i-1)))
%p A369438     end:
%p A369438 a:= n-> b(n^3, n):
%p A369438 seq(a(n), n=0..35);  # _Alois P. Heinz_, Jan 23 2024
%t A369438 Table[Coefficient[Product[(x^(k^3) + 1 + 1/x^(k^3)), {k, 1, n}], x, n^3], {n, 0, 34}]
%Y A369438 Cf. A000578, A316706, A368845, A369345.
%K A369438 nonn
%O A369438 0,7
%A A369438 _Ilya Gutkovskiy_, Jan 23 2024