cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369449 a(n) = A003415(gcd(A003415(n), A276086(n))), where A003415 is the arithmetic derivative and A276086 is the primorial base exp-function.

This page as a plain text file.
%I A369449 #6 Jan 26 2024 10:20:33
%S A369449 0,1,0,0,0,0,1,0,1,5,0,0,0,0,1,1,0,0,0,0,1,7,0,0,0,7,8,1,0,0,0,0,0,9,
%T A369449 0,5,1,0,10,1,0,0,0,0,1,1,10,0,1,9,8,7,1,0,0,1,0,1,0,0,0,0,1,1,1,21,0,
%U A369449 0,1,1,0,0,0,0,1,1,1,21,0,0,0,5,0,0,0,1,8,1,12,0,0,1,1,1,14,5,0,0,1,8,12,0,1
%N A369449 a(n) = A003415(gcd(A003415(n), A276086(n))), where A003415 is the arithmetic derivative and A276086 is the primorial base exp-function.
%H A369449 Antti Karttunen, <a href="/A369449/b369449.txt">Table of n, a(n) for n = 0..16384</a>
%F A369449 a(n) = A003415(A327858(n)).
%o A369449 (PARI)
%o A369449 A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
%o A369449 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
%o A369449 A369449(n) = A003415(gcd(A003415(n), A276086(n)));
%Y A369449 Cf. A003415, A276086, A327858.
%K A369449 nonn
%O A369449 0,10
%A A369449 _Antti Karttunen_, Jan 26 2024