cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369468 a(n) = Product_{k=0..n} ((3*k+1)*(3*k+2))^(n-k).

Original entry on oeis.org

1, 2, 80, 179200, 44154880000, 1980116762624000000, 24153039733453645414400000000, 111953168097640511435244254003200000000000, 262573865013264352348221085395200893360537600000000000000, 400294812944619753243237971399105071635747117771700305920000000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[((3*k+1)*(3*k+2))^(n-k), {k, 0, n}], {n, 0, 10}]
    Round[Table[3^(n^2 + 3*n/2 + 1/2) * BarnesG[n + 4/3] * BarnesG[n + 5/3] / (BarnesG[1/3] * BarnesG[2/3] * (2*Pi)^(n+1)), {n, 0, 10}]]
    Round[Table[Glaisher^(8/3) * Gamma[1/3]^(1/3) * BarnesG[n + 4/3] * BarnesG[n + 5/3] * 3^(n^2 + 3*n/2 + 11/36) / (Exp[2/9] * (2*Pi)^(n + 2/3)), {n, 0, 10}]]

Formula

a(n) ~ A^(2/3) * Gamma(1/3)^(1/3) * 3^(n^2 + 3*n/2 + 11/36) * n^(n^2 + n + 1/9) / ((2*Pi)^(1/6) * exp(3*n^2/2 + n + 1/18)), where A is the Glaisher-Kinkelin constant A074962.
a(n) = A263416(n) * A263417(n).
a(n) = 3^(n^2 + 3*n/2 + 1/2) * BarnesG(n + 4/3) * BarnesG(n + 5/3) / (BarnesG(1/3) * BarnesG(2/3) * (2*Pi)^(n+1)).