cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369495 a(n) = [x^n] Product_{k=1..n} (x^(k*(k+1)/2) + 1 + 1/x^(k*(k+1)/2)).

This page as a plain text file.
%I A369495 #6 Jan 25 2024 08:03:43
%S A369495 1,1,1,2,3,5,11,25,56,129,313,748,1831,4584,11581,29555,76398,199191,
%T A369495 522746,1382158,3676072,9828631,26412174,71310248,193346941,526302232,
%U A369495 1437895915,3941671019,10839118898,29893768219,82671240995,229213877639,637049969282
%N A369495 a(n) = [x^n] Product_{k=1..n} (x^(k*(k+1)/2) + 1 + 1/x^(k*(k+1)/2)).
%p A369495 b:= proc(n, i) option remember; (m-> `if`(n>m, 0,
%p A369495      `if`(n=m, 1, b(abs(n-i*(i+1)/2), i-1)+b(n, i-1)+
%p A369495         b(n+i*(i+1)/2, i-1))))((2+(3+i)*i)*i/6)
%p A369495     end:
%p A369495 a:= n-> b(n$2):
%p A369495 seq(a(n), n=0..32);  # _Alois P. Heinz_, Jan 24 2024
%t A369495 Table[Coefficient[Product[x^(k (k + 1)/2) + 1 + 1/x^(k (k + 1)/2), {k, 1, n}], x, n], {n, 0, 32}]
%Y A369495 Cf. A000217, A316706, A351002, A369344, A369433.
%K A369495 nonn
%O A369495 0,4
%A A369495 _Ilya Gutkovskiy_, Jan 24 2024