This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369495 #6 Jan 25 2024 08:03:43 %S A369495 1,1,1,2,3,5,11,25,56,129,313,748,1831,4584,11581,29555,76398,199191, %T A369495 522746,1382158,3676072,9828631,26412174,71310248,193346941,526302232, %U A369495 1437895915,3941671019,10839118898,29893768219,82671240995,229213877639,637049969282 %N A369495 a(n) = [x^n] Product_{k=1..n} (x^(k*(k+1)/2) + 1 + 1/x^(k*(k+1)/2)). %p A369495 b:= proc(n, i) option remember; (m-> `if`(n>m, 0, %p A369495 `if`(n=m, 1, b(abs(n-i*(i+1)/2), i-1)+b(n, i-1)+ %p A369495 b(n+i*(i+1)/2, i-1))))((2+(3+i)*i)*i/6) %p A369495 end: %p A369495 a:= n-> b(n$2): %p A369495 seq(a(n), n=0..32); # _Alois P. Heinz_, Jan 24 2024 %t A369495 Table[Coefficient[Product[x^(k (k + 1)/2) + 1 + 1/x^(k (k + 1)/2), {k, 1, n}], x, n], {n, 0, 32}] %Y A369495 Cf. A000217, A316706, A351002, A369344, A369433. %K A369495 nonn %O A369495 0,4 %A A369495 _Ilya Gutkovskiy_, Jan 24 2024