A369497 Table read by rows: row n is the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = prime(n+2) and whose short leg "a" is even.
8, 15, 17, 12, 35, 37, 20, 99, 101, 24, 143, 145, 32, 255, 257, 36, 323, 325, 44, 483, 485, 56, 783, 785, 60, 899, 901, 72, 1295, 1297, 80, 1599, 1601, 84, 1763, 1765, 92, 2115, 2117, 104, 2703, 2705, 116, 3363, 3365, 120, 3599, 3601, 132, 4355, 4357, 140, 4899, 4901, 144, 5183, 5185, 156, 6083, 6085
Offset: 1
Examples
Table begins: n=1: 8, 15, 17; n=2: 12, 35, 37; n=3: 20, 99, 101; n=4: 24, 143, 145; n=5: 32, 255, 257;
References
- Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.
Links
- Miguel-Ángel Pérez García-Ortega, Ejercicio 3.5.
Formula
Row n = (a, b, c) = (2*p - 2, p^2 - 2*p, p^2 - 2*p + 2), where p = prime(n+2) = A000040(n+2).
Comments