A369498 Integers k such that k = a^2 + b^2 = c^2 + d^2 and a + b = 3(c - d), where a, b, c and d are distinct positive integers.
65, 260, 585, 650, 1037, 1040, 1625, 1853, 2340, 2378, 2465, 2600, 3185, 3650, 4148, 4160, 5265, 5513, 5850, 6500, 6890, 7298, 7412, 7865, 8177, 9333, 9360, 9512, 9593, 9860, 10400, 10985, 12740, 14600, 14625, 14690, 16133, 16250, 16592, 16640, 16677, 18005
Offset: 1
Keywords
Examples
1037 is a term because 1037 = 26^2 + 19^2 = 29^2 + 14^2 and 26 + 19 = 3*(29 - 14).
Links
- D. R. Heath-Brown, Linear relations amongst sums of two squares, London Mathematical Society Lecture Note Series, 303 (2003), 133 - 176.
Programs
-
Python
from math import isqrt def A369498_list(n): return sorted([ a**2 + b**2 for a in range(1, isqrt(n) + 1) for b in range(1, a) for c in range(1, isqrt(n) + 1) for d in range(1, c) if a != c and a != d and a**2 + b**2 == c**2 + d**2 and a + b == 3 * (c - d) and a**2 + b**2 <= n ]) print(A369498_list(18500))
Comments