cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369499 Decimal expansion of exp(sqrt(3)*Pi/18)/3^(1/4).

This page as a plain text file.
%I A369499 #5 Jan 25 2024 02:47:48
%S A369499 1,0,2,8,0,3,2,5,4,1,6,8,9,5,7,6,7,7,0,4,6,2,8,8,4,3,5,7,8,5,7,7,2,1,
%T A369499 6,7,7,8,9,2,4,1,8,6,2,6,5,4,0,0,2,2,3,9,5,4,0,6,8,8,1,6,2,8,0,3,8,0,
%U A369499 5,3,4,7,2,2,7,0,9,7,9,0,1,0,6,6,7,1,0,7,6,7,2,0,0,9,7,0,6,9,1,7,1,3,0,5,0,3,3,4,0,3,4,5,6,1,5,0,6,7,0,8
%N A369499 Decimal expansion of exp(sqrt(3)*Pi/18)/3^(1/4).
%H A369499 Albert Stadler, <a href="https://www.jstor.org/stable/10.4169/amer.math.monthly.119.10.880">Problem 11677</a>, Problems and Solutions, The American Mathematical Monthly, Vol. 119, No. 10 (2012), p. 880; <a href="https://www.jstor.org/stable/10.4169/amer.math.monthly.121.10.946">Dedekind eta Function Disguised</a>, Solution to Problem 11677 by Radouan Boukharfane, ibid., Vol. 121, No. 10 (December 2014), pp. 951-952. Note that the problem appeared with typos.
%H A369499 Allen Stenger, <a href="https://www.jstor.org/stable/10.4169/amer.math.monthly.124.2.116">Experimental Math for Math Monthly Problems</a>, The American Mathematical Monthly, Vol. 124, No. 2 (2017), pp. 116-131; <a href="https://www.allenstenger.com/uploads/1/4/1/8/14182140/expmathmathmonthlyfeb2017.pdf">alternative link</a>. See pp. 129-130.
%F A369499 Equals Product_{k>=1} (1 + 2*exp(-k*Pi*sqrt(3)) * cosh(k*Pi/sqrt(3))) (Stadler, 2012).
%e A369499 1.02803254168957677046288435785772167789241862654002...
%t A369499 RealDigits[Exp[Sqrt[3]*Pi/18]/3^(1/4), 10, 120][[1]]
%o A369499 (PARI) exp(sqrt(3)*Pi/18)/sqrtn(3, 4)
%Y A369499 Cf. A011002.
%K A369499 nonn,cons
%O A369499 1,3
%A A369499 _Amiram Eldar_, Jan 25 2024