cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369501 Decimal expansion of the integral of the reciprocal of the Cantor function.

This page as a plain text file.
%I A369501 #10 Feb 16 2025 08:34:06
%S A369501 3,3,6,4,6,5,0,7,2,8,1,0,0,9,2,5,1,6,0,8,3,8,9,3,4,9,6,2,8,9
%N A369501 Decimal expansion of the integral of the reciprocal of the Cantor function.
%H A369501 Harold G. Diamond and Bruce Reznick, <a href="http://www.jstor.org/stable/2975295">Problem 10621</a>, Problems and Solutions, The American Mathematical Monthly, Vol. 104, No. 9 (1997), p. 870; <a href="https://www.jstor.org/stable/2589071">Cantor's Singular Moments</a>, Solutions to Problem 10621 by Kenneth F. Andersen and Omran Kouba, ibid., Vol. 106, No. 2 (1999), pp. 175-176.
%H A369501 Steven Finch, <a href="https://arxiv.org/abs/2003.09458">Cantor-solus and Cantor-multus Distributions</a>, arXiv:2003.09458 [math.CO], 2020.
%H A369501 Russell A. Gordon, <a href="https://doi.org/10.1080/00029890.2009.11920931">Some Integrals Involving the Cantor Function</a>, The American Mathematical Monthly, Vol. 116, No. 3 (2009), pp. 218-227; <a href="https://www.jstor.org/stable/40391067">alternative link</a>.
%H A369501 Helmut Prodinger, <a href="https://www.emis.de/journals/SWJPAM/vol1-00.html">On Cantor's singular moments</a>, Southwest Journal of Pure and Applied Mathematics, Vol. 2000, Issue 1 (July 2000), pp. 27-29; <a href="https://arxiv.org/abs/math/9904072">arXiv preprint</a>, arXiv:math/9904072 [math.CO], 1999.
%H A369501 Helmut Prodinger, <a href="https://doi.org/10.1007/978-3-0348-8211-8_22">Digits and beyond</a>, in: B. Chauvin, P. Flajolet, D. Gardy, and A. Mokkadem (eds.), Mathematics and Computer Science II: Algorithms, Trees, Combinatorics and Probabilities, Birkhäuser, Basel (2012), pp. 355-377.
%H A369501 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CantorFunction.html">Cantor Function</a>.
%H A369501 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cantor_function">Cantor function</a>.
%F A369501 Equals Integral_{x=0..1} (1/c(x)) dx, where c(x) is the Cantor function.
%F A369501 Equals Sum_{k>=0} Integral_{x=0..1} c(x)^k dx = Sum_{k>=0} A095844(k)/A095845(k) (Javier Duoandikoetx, in "Cantor's Singular Moments", 1999).
%F A369501 Equals -1/3 + (2/3) * Sum_{k>=1} (2/3)^k * H(2^k), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number (Prodinger, 2000).
%e A369501 3.36465072810092516083893496289...
%Y A369501 Cf. A001008, A002805, A095844, A095845.
%K A369501 nonn,cons,more
%O A369501 1,1
%A A369501 _Amiram Eldar_, Jan 25 2024