This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369501 #10 Feb 16 2025 08:34:06 %S A369501 3,3,6,4,6,5,0,7,2,8,1,0,0,9,2,5,1,6,0,8,3,8,9,3,4,9,6,2,8,9 %N A369501 Decimal expansion of the integral of the reciprocal of the Cantor function. %H A369501 Harold G. Diamond and Bruce Reznick, <a href="http://www.jstor.org/stable/2975295">Problem 10621</a>, Problems and Solutions, The American Mathematical Monthly, Vol. 104, No. 9 (1997), p. 870; <a href="https://www.jstor.org/stable/2589071">Cantor's Singular Moments</a>, Solutions to Problem 10621 by Kenneth F. Andersen and Omran Kouba, ibid., Vol. 106, No. 2 (1999), pp. 175-176. %H A369501 Steven Finch, <a href="https://arxiv.org/abs/2003.09458">Cantor-solus and Cantor-multus Distributions</a>, arXiv:2003.09458 [math.CO], 2020. %H A369501 Russell A. Gordon, <a href="https://doi.org/10.1080/00029890.2009.11920931">Some Integrals Involving the Cantor Function</a>, The American Mathematical Monthly, Vol. 116, No. 3 (2009), pp. 218-227; <a href="https://www.jstor.org/stable/40391067">alternative link</a>. %H A369501 Helmut Prodinger, <a href="https://www.emis.de/journals/SWJPAM/vol1-00.html">On Cantor's singular moments</a>, Southwest Journal of Pure and Applied Mathematics, Vol. 2000, Issue 1 (July 2000), pp. 27-29; <a href="https://arxiv.org/abs/math/9904072">arXiv preprint</a>, arXiv:math/9904072 [math.CO], 1999. %H A369501 Helmut Prodinger, <a href="https://doi.org/10.1007/978-3-0348-8211-8_22">Digits and beyond</a>, in: B. Chauvin, P. Flajolet, D. Gardy, and A. Mokkadem (eds.), Mathematics and Computer Science II: Algorithms, Trees, Combinatorics and Probabilities, Birkhäuser, Basel (2012), pp. 355-377. %H A369501 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CantorFunction.html">Cantor Function</a>. %H A369501 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cantor_function">Cantor function</a>. %F A369501 Equals Integral_{x=0..1} (1/c(x)) dx, where c(x) is the Cantor function. %F A369501 Equals Sum_{k>=0} Integral_{x=0..1} c(x)^k dx = Sum_{k>=0} A095844(k)/A095845(k) (Javier Duoandikoetx, in "Cantor's Singular Moments", 1999). %F A369501 Equals -1/3 + (2/3) * Sum_{k>=1} (2/3)^k * H(2^k), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number (Prodinger, 2000). %e A369501 3.36465072810092516083893496289... %Y A369501 Cf. A001008, A002805, A095844, A095845. %K A369501 nonn,cons,more %O A369501 1,1 %A A369501 _Amiram Eldar_, Jan 25 2024