This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369515 #25 Feb 04 2024 18:25:29 %S A369515 0,1,2,3,5,7,4,11,13,6,10,17,19,14,8,22,23,29,26,9,15,34,31,37,38,21, %T A369515 12,33,46,41,43,58,39,18,20,51,62,47,53,74,57,28,16,44,69,82,59,61,86, %U A369515 87,52,24,25,68,93,94,67,71,106,111,76,35,30,55,92,123,118 %N A369515 Triangle of hexagons read by row, with right diagonal having in-order odd-indexed primes, left diagonal having 2 followed by the in-order even-indexed primes, and column elements are the least multiple of the prime at the top of the column not already in the sequence, with 0 and 1 prepended. %C A369515 The sequence is a permutation of the nonnegative integers. %e A369515 a(0)=0, a(1)=1, followed by triangle read by rows: %e A369515 |2| %e A369515 |3| | | |5 | %e A369515 |7 | | | |4| | | |11| %e A369515 |13| | | |6| | | |10| | | |17| %e A369515 |19| | | |14| | | |8| | | |22| | | |23| %e A369515 Row 5, element 3 = 8, because 2*3=6 has already appeared, but 2*4=8 has not. %o A369515 (Python) %o A369515 from sympy.ntheory.generate import prime %o A369515 from math import ceil %o A369515 def get_column_tops(n): %o A369515 return [1 + abs((n-1)-2*m) for m in range(1,n-1)] %o A369515 def get_indices(rowNum): %o A369515 left=(rowNum*(rowNum-1))//2 %o A369515 right=left+rowNum-1 %o A369515 return (left, right) %o A369515 def get_least(m,seq): %o A369515 mult=2 %o A369515 d=m*mult %o A369515 while d in seq: %o A369515 mult+=1 %o A369515 d=m*mult %o A369515 return d %o A369515 seq,rnum = ([],1) %o A369515 while len(seq)<56: %o A369515 seq.append(prime(rnum+max(0,rnum-2))) %o A369515 cols = get_column_tops(rnum) %o A369515 for k in range(len(cols)): %o A369515 ndcs=get_indices(cols[k]) %o A369515 if k<ceil(len(cols)/2): %o A369515 m=seq[ndcs[0]] %o A369515 seq.append(get_least(m,seq)) %o A369515 else: %o A369515 m=seq[ndcs[1]] %o A369515 seq.append(get_least(m,seq)) %o A369515 if rnum > 1: %o A369515 seq.append(prime(2*rnum-1)) %o A369515 rnum+=1 %o A369515 seq=[0,1]+seq %o A369515 print(seq) %Y A369515 Cf. A143182. %K A369515 nonn,tabl %O A369515 0,3 %A A369515 _J. Stauduhar_, Jan 25 2024