cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369517 a(n) = [x^(n^4)] Product_{k=1..n} (x^(k^4) + 1 + 1/x^(k^4)).

This page as a plain text file.
%I A369517 #15 Feb 14 2025 09:45:42
%S A369517 1,1,1,1,1,1,1,1,1,2,3,9,20,43,85,183,394,1010,2254,5589,12383,31226,
%T A369517 71153,182382,426055,1105686,2615167,6906858,16607500,44276140,
%U A369517 107836782,290059089,715361182,1937639649,4829754357,13160903826,33112002835,90800047879
%N A369517 a(n) = [x^(n^4)] Product_{k=1..n} (x^(k^4) + 1 + 1/x^(k^4)).
%p A369517 b:= proc(n, i) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1, b(n, i-1)+
%p A369517       b(abs(n-i^4), i-1)+b(n+i^4, i-1))))(i*(i+1)*(2*i+1)*(3*i^2+3*i-1)/30)
%p A369517     end:
%p A369517 a:= n-> b(n^4, n):
%p A369517 seq(a(n), n=0..33);  # _Alois P. Heinz_, Jan 25 2024
%t A369517 b[n_, i_] := b[n, i] = Function[m, If[n > m, 0, If[n == m, 1, b[n, i-1] + b[Abs[n-i^4], i-1] + b[n+i^4, i-1]]]][i*(i+1)*(2*i+1)*(3*i^2+3*i-1)/30];
%t A369517 a[n_] := b[n^4, n];
%t A369517 Table[a[n], {n, 0, 37}] (* _Jean-François Alcover_, Feb 14 2025, after _Alois P. Heinz_ *)
%Y A369517 Cf. A000583, A316706, A369358, A369434, A369438.
%K A369517 nonn
%O A369517 0,10
%A A369517 _Ilya Gutkovskiy_, Jan 25 2024
%E A369517 a(34)-a(37) from _Alois P. Heinz_, Jan 25 2024