This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369518 #15 Nov 24 2024 10:08:47 %S A369518 1,1,2,1,4,6,1,6,17,23,1,5,33,80,103,1,7,24,184,408,511,1,9,41,121, %T A369518 1054,2208,2719,1,8,63,235,643,6196,12486,15205,1,10,51,411,1363,3571, %U A369518 37244,72992,88197,1,12,74,309,2625,8057,20543,228092,437821,526018 %N A369518 Array read by downward antidiagonals: A(n,k) = Sum_{j=0..k + (k mod 3) + 1} A(n-1,j) with A(0,k) = 1, n >= 0, k >= 0. %H A369518 Terence Tao, <a href="https://mathoverflow.net/a/449471/231922">Elegant recursion for A301897</a>, answer to question on MathOverflow (2023). %F A369518 A(n,3k) = A(n,3k-1) - A(n-1,3k+2), A(n,3k+1) = A(n,3k) + A(n-1,3k+2) + A(n-1,3k+3), A(n,3k+2) = A(n, 3k+1) + A(n-1,3k+4) + A(n-1,3k+5) with A(n,0) = A(n-1,0) + A(n-1,1), A(0,k) = 1. - _Mikhail Kurkov_, Nov 24 2024 %e A369518 Array begins: %e A369518 ================================================== %e A369518 n\k| 0 1 2 3 4 5 6 ... %e A369518 ---+---------------------------------------------- %e A369518 0 | 1 1 1 1 1 1 1 ... %e A369518 1 | 2 4 6 5 7 9 8 ... %e A369518 2 | 6 17 33 24 41 63 51 ... %e A369518 3 | 23 80 184 121 235 411 309 ... %e A369518 4 | 103 408 1054 643 1363 2625 1861 ... %e A369518 5 | 511 2208 6196 3571 8057 16701 11296 ... %e A369518 6 | 2719 12486 37244 20543 48540 106560 69376 ... %e A369518 ... %o A369518 (PARI) %o A369518 A(m, n=m)={my(r=vectorv(m+1), v=vector(n+3*m+1, k, 1)); r[1] = v[1..n+1]; %o A369518 for(i=1, m, v=vector(#v-3, k, sum(j=1, k + (k-1)%3 + 1, v[j])); r[1+i] = v[1..n+1]); Mat(r)} %o A369518 { A(6) } %Y A369518 Column k=0 is A301897 (with different offset). %K A369518 nonn,tabl %O A369518 0,3 %A A369518 _Mikhail Kurkov_, Jan 25 2024