cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369521 Sphenic numbers differing by more than 3 from any other squarefree number.

Original entry on oeis.org

2526, 44405, 209674, 220209, 234622, 328877, 375823, 409737, 428947, 473673, 540026, 569427, 611174, 736077, 748673, 758423, 781747, 800022, 863722, 889251, 914878, 927622, 973927, 982398, 988478, 994061, 1003474, 1021602, 1072477, 1088877, 1150077, 1157822, 1158451, 1211822
Offset: 1

Views

Author

Massimo Kofler, Jan 25 2024

Keywords

Comments

Sphenic numbers are the product of three distinct primes (cf. A007304).

Examples

			2526 = 2 * 3 * 421 is a sphenic number; 2523 = 3 * 29^2, 2524 = 2^2 * 631, 2525 = 5^2 * 101, 2527 = 7 * 19^2, 2528 = 2^5 * 79, 2529 = 3^2 * 281 are all nonsquarefree numbers, so 2526 is a term.
		

Crossrefs

Cf. A007304, A013929. Subsequence of A268332.

Programs

  • Maple
    N:= 2*10^6: # to get all terms <= N
    P:= select(isprime, [2,seq(i,i=3..N/6,2)]):
    nP:= nops(P): R:= NULL:
    for i from 1 do
     p:= P[i]; if p^3 >= N then break fi;
     for j from i+1 do
       q:= P[j]: if p*q^2 >= N then break fi;
       for k from j+1 to nP do
         x:= p*q*P[k];
         if x > N then break fi;
         if not ormap(numtheory:-issqrfree, [x-3,x-2,x-1,x+1,x+2,x+3]) then R:= R,x fi
    od od od:
    sort([R]); # Robert Israel, Feb 25 2024
  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]], p}, p = Times @@ e; If[p > 1, 0, If[e == {1, 1, 1}, 1, -1]]]; SequencePosition[Array[f, 2*10^6], {0, 0, 0, 1, 0, 0, 0}][[;; , 1]] + 3 (* Amiram Eldar, Jan 25 2024 *)