A369521 Sphenic numbers differing by more than 3 from any other squarefree number.
2526, 44405, 209674, 220209, 234622, 328877, 375823, 409737, 428947, 473673, 540026, 569427, 611174, 736077, 748673, 758423, 781747, 800022, 863722, 889251, 914878, 927622, 973927, 982398, 988478, 994061, 1003474, 1021602, 1072477, 1088877, 1150077, 1157822, 1158451, 1211822
Offset: 1
Keywords
Examples
2526 = 2 * 3 * 421 is a sphenic number; 2523 = 3 * 29^2, 2524 = 2^2 * 631, 2525 = 5^2 * 101, 2527 = 7 * 19^2, 2528 = 2^5 * 79, 2529 = 3^2 * 281 are all nonsquarefree numbers, so 2526 is a term.
Links
- Robert Israel, Table of n, a(n) for n = 1..3273 (all terms < 10^8)
Programs
-
Maple
N:= 2*10^6: # to get all terms <= N P:= select(isprime, [2,seq(i,i=3..N/6,2)]): nP:= nops(P): R:= NULL: for i from 1 do p:= P[i]; if p^3 >= N then break fi; for j from i+1 do q:= P[j]: if p*q^2 >= N then break fi; for k from j+1 to nP do x:= p*q*P[k]; if x > N then break fi; if not ormap(numtheory:-issqrfree, [x-3,x-2,x-1,x+1,x+2,x+3]) then R:= R,x fi od od od: sort([R]); # Robert Israel, Feb 25 2024
-
Mathematica
f[n_] := Module[{e = FactorInteger[n][[;; , 2]], p}, p = Times @@ e; If[p > 1, 0, If[e == {1, 1, 1}, 1, -1]]]; SequencePosition[Array[f, 2*10^6], {0, 0, 0, 1, 0, 0, 0}][[;; , 1]] + 3 (* Amiram Eldar, Jan 25 2024 *)
Comments