This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369524 #27 Feb 19 2024 22:36:28 %S A369524 0,1,1,2,2,0,3,4,2,1,4,7,6,3,0,5,11,14,11,3,1,6,16,28,34,18,5,0,7,22, %T A369524 50,87,81,38,5,1,8,29,82,191,276,227,70,8,0,9,37,126,373,759,983,615, %U A369524 151,10,1,10,46,184,666,1782,3301,3500,1789,314,15,0,11,56,258,1109,3717,9180,14545,13007,5206,684,19,1 %N A369524 Array read by antidiagonals: T(n,k) is the number of length n necklaces using at most k colors with black beads always occurring in runs of even length. %C A369524 Equivalently, black beads can be considered to have length 2, while all other beads have length 1. %C A369524 Column k is the "CIK" (necklace, indistinct, unlabeled) transform of {k-1, 1, 0, 0, 0, ...} (see C. Bower link). - _Andrew Howroyd_, Jan 25 2024 %H A369524 C. G. Bower, <a href="/transforms2.html">Transforms (2)</a>. %F A369524 T(n,k) = (1/n) * Sum_{d|n} phi(n/d) * ((k-1)^d + Sum_{i=1..floor(d/2)} binomial(d-i-1,i-1) * d/i * (k-1)^(d-2*i)), where phi(n) = A000010. %F A369524 G.f. of column k: Sum_{d>=1} (phi(d)/d) * log(1/(1 - (k-1)*x^d - x^(2*d))). - _Andrew Howroyd_, Jan 25 2024 %e A369524 n\k| 1 2 3 4 5 6 7 8 9 ... %e A369524 ---+----------------------------------------------------------------- %e A369524 1 | 0 1 2 3 4 5 6 7 8 ...A001477 %e A369524 2 | 1 2 4 7 11 16 22 29 37 ...A000124 %e A369524 3 | 0 2 6 14 28 50 82 126 184 ...A033547 %e A369524 4 | 1 3 11 34 87 191 373 666 1109 %e A369524 5 | 0 3 18 81 276 759 1782 3717 7080 %e A369524 6 | 1 5 38 227 983 3301 9180 22163 47997 %e A369524 7 | 0 5 70 615 3500 14545 48210 135155 333400 %e A369524 8 | 1 8 151 1789 13007 66166 260113 844691 2370229 %e A369524 9 | 0 10 314 5206 48820 304970 1423790 5358934 17110376 %e A369524 10 | 1 15 684 15490 186195 1425453 7897006 34438104 125093109 %e A369524 ... %o A369524 (MATLAB) %o A369524 function [res] = num2(n,k) %o A369524 res=0; %o A369524 for d=divisors(n) %o A369524 s=(k-1)^d; %o A369524 for i=1:floor(d/2) %o A369524 s=s + nchoosek(d-i-1,i-1) * d/i * (k-1)^(d-2*i); %o A369524 end %o A369524 res= res + eulerPhi(n/d) * s; %o A369524 end %o A369524 res=res/n; %o A369524 end %o A369524 (PARI) T(n,k) = sum(d=1, n, eulerphi(d)*polcoef(log(1/(1 - (k-1)*x^d - x^(2*d)) + O(x*x^n)), n)/d) \\ _Andrew Howroyd_, Jan 25 2024 %Y A369524 Columns 1..2 are A000035(n-1), A000358. %Y A369524 Rows 1..3 are A001477(k-1), A000124(k-1), A033547(k-1). %Y A369524 Cf. A000010 (phi), A075195 (all beads of same length). %K A369524 nonn,tabl %O A369524 1,4 %A A369524 _Maxim Karimov_ and Vladislav Sulima, Jan 25 2024