This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369527 #14 Nov 24 2024 13:33:52 %S A369527 1,1,2,1,5,7,1,10,30,37,1,17,107,227,264,1,26,298,1261,2169,2433,1,37, %T A369527 687,5455,16804,25480,27913,1,50,1382,18557,105837,257073,358993, %U A369527 386906,1,65,2515,52267,516192,2209584,4523241,5959213,6346119,1,82,4242,127477,2009089,14913889,50267233,90976402,114813254,121159373 %N A369527 Array read by downward antidiagonals: A(n,k) = (k+1)^2*A(n-1,k) + A(n-1,k+1) with A(0,k) = 1, n >= 0, k >= 0. %H A369527 Ira M. Gessel, <a href="https://mathoverflow.net/a/462813/231922">General case of the some R-recursions</a>, answer to question on MathOverflow (2024). %e A369527 Array begins: %e A369527 ==================================================== %e A369527 n\k| 0 1 2 3 4 5 ... %e A369527 ---+------------------------------------------------ %e A369527 0 | 1 1 1 1 1 1 ... %e A369527 1 | 2 5 10 17 26 37 ... %e A369527 2 | 7 30 107 298 687 1382 ... %e A369527 3 | 37 227 1261 5455 18557 52267 ... %e A369527 4 | 264 2169 16804 105837 516192 2009089 ... %e A369527 5 | 2433 25480 257073 2209584 14913889 78851808 ... %e A369527 ... %o A369527 (PARI) %o A369527 A(m, n=m)={my(r=vectorv(m+1), v=vector(n+m+1, k, 1)); r[1] = v[1..n+1]; %o A369527 for(i=1, m, v=vector(#v-1, k, k^2*v[k] + v[k+1]); r[1+i] = v[1..n+1]); Mat(r)} %o A369527 { A(5) } %Y A369527 Column k=0 is A135920 (without initial term and with different offset). %K A369527 nonn,tabl %O A369527 0,3 %A A369527 _Mikhail Kurkov_, Jan 25 2024