cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369541 Numbers k neither squarefree nor prime powers that are products of primorials such that A119288(k) <= k/A007947(k) < A053669(k).

Original entry on oeis.org

24, 120, 180, 840, 1260, 1680, 9240, 13860, 18480, 27720, 120120, 180180, 240240, 360360, 480480, 2042040, 3063060, 4084080, 6126120, 8168160, 38798760, 58198140, 77597520, 116396280, 155195040, 892371480, 1338557220, 1784742960, 2677114440, 3569485920, 5354228880
Offset: 1

Views

Author

Michael De Vlieger, Jan 28 2024

Keywords

Comments

Proper subset of A369540, itself contained in A060735, which in turn is a subset of A055932.

Examples

			Seen as an irregular triangle T(n,k) of rows n where P(n) | T(n,k)
2:      24;
3:     120,     180;
4:     840,    1260,    1680;
5:    9240,   13860,   18480,   27720;
6:  120120,  180180,  240240,  360360,  480480;
7: 2042040, 3063060, 4084080, 6126120, 8168160;
   ...
		

Crossrefs

Programs

  • Mathematica
    P = 2; nn = 10;
     s = Select[Range[4, Prime[nn], 2],
       Or[IntegerQ@ Log2[#],
         And[Union@ Differences@ PrimePi[#1] == {1},
            AllTrue[Differences[#2], # <= 0 &]] & @@
            Transpose@ FactorInteger[#]] &];
     Table[P *= Prime[n];
       P*TakeWhile[s, # <= Prime[n + 1] &], {n, 2, nn}] // Flatten

Formula

{a(n)} = { m × P(n) : 3 <= m < q, n >= 2, m not in A025487 }.
Intersection of A364998 and A025487.