cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369572 Expansion of Product_{k>=1} (1 + x^(k^2)) * (1 + x^(k^3)).

This page as a plain text file.
%I A369572 #10 Jan 28 2024 05:58:13
%S A369572 1,2,1,0,1,2,1,0,1,3,3,1,1,3,3,1,1,3,3,1,1,3,3,1,1,4,5,3,3,5,5,3,2,3,
%T A369572 5,5,5,7,7,5,5,6,5,4,5,7,7,5,5,8,9,6,6,10,10,6,6,9,9,6,5,10,13,9,9,15,
%U A369572 14,7,6,11,13,9,8,15,19,13,10,16,18,12,10,16
%N A369572 Expansion of Product_{k>=1} (1 + x^(k^2)) * (1 + x^(k^3)).
%C A369572 Convolution of A033461 and A279329.
%C A369572 a(n) is the number of pairs (Q(k), P(n-k)), 0<=k<=n, where Q(k) is a partition of k into distinct squares and P(n-k) is a partition of n-k into distinct cubes.
%H A369572 Vaclav Kotesovec, <a href="/A369572/b369572.txt">Table of n, a(n) for n = 0..10000</a>
%t A369572 nmax = 200; CoefficientList[Series[Product[(1+x^(k^2))*(1+x^(k^3)), {k, 1, nmax^(1/2)}], {x, 0, nmax}], x]
%Y A369572 Cf. A033461, A279329.
%K A369572 nonn
%O A369572 0,2
%A A369572 _Vaclav Kotesovec_, Jan 26 2024