cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369577 a(n) = [x^n] Product_{j=1..n, k=1..n} 1/(1 - x^(k^j)).

This page as a plain text file.
%I A369577 #14 Apr 15 2025 14:14:22
%S A369577 1,1,4,14,52,193,724,2736,10404,39759,152555,587323,2267578,8776197,
%T A369577 34038411,132262696,514774705,2006461961,7830924282,30599035846,
%U A369577 119692591204,468651774760,1836626054421,7203559635483,28274941506056,111060542576799,436515284729667
%N A369577 a(n) = [x^n] Product_{j=1..n, k=1..n} 1/(1 - x^(k^j)).
%H A369577 Vaclav Kotesovec, <a href="/A369577/b369577.txt">Table of n, a(n) for n = 0..1000</a>
%F A369577 a(n) ~ c * 4^n / sqrt(n), where c = 0.52405470637768487694539405770364130415279761385131429278498764796443...
%t A369577 Table[SeriesCoefficient[Product[Product[1/(1 - x^(k^j)), {k, 1, n^(1/j)}], {j, 1, n}], {x, 0, n}], {n, 0, 40}]
%Y A369577 Cf. A000041, A001156, A003108, A369520, A369576.
%K A369577 nonn
%O A369577 0,3
%A A369577 _Vaclav Kotesovec_, Jan 26 2024