This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369585 #13 Mar 14 2025 09:34:27 %S A369585 1,0,2,-1,0,8,0,-8,0,48,1,0,-72,0,384,0,18,0,-768,0,3840,-1,0,288,0, %T A369585 -9600,0,46080,0,-32,0,4800,0,-138240,0,645120,1,0,-800,0,86400,0, %U A369585 -2257920,0,10321920,0,50,0,-19200,0,1693440,0,-41287680,0,185794560 %N A369585 Table read by rows. T(n, k) = [z^k] h(n, 1, z) where h(n, v, z) are the modified Lommel polynomials (A369117). %H A369585 David Dickinson, <a href="https://doi.org/10.1090/S0002-9939-1954-0086897-8">On Lommel and Bessel polynomials</a>, Proc. AMS 5 (1954) 946-956. %H A369585 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LommelPolynomial.html">Lommel Polynomial</a>. %F A369585 T(n, k) = [z^k] 2*n*z*p(n-1, z) - p(n-2, z) where p(-1, z) = 0 and p(0, z) = 1. %F A369585 T(n, k) = (-1)^k * [z^k] h(n, -n, z) where h(n, v, z) are the modified Lommel polynomials (A369117). %e A369585 The list of coefficients starts: %e A369585 [0] 1 %e A369585 [1] 0, 2 %e A369585 [2] -1, 0, 8 %e A369585 [3] 0, -8, 0, 48 %e A369585 [4] 1, 0, -72, 0, 384 %e A369585 [5] 0, 18, 0, -768, 0, 3840 %e A369585 [6] -1, 0, 288, 0, -9600, 0, 46080 %e A369585 [7] 0, -32, 0, 4800, 0, -138240, 0, 645120 %e A369585 [8] 1, 0, -800, 0, 86400, 0, -2257920, 0, 10321920 %p A369585 p := proc(n, x) option remember; if n = -1 then 0 elif n = 0 then 1 else %p A369585 2*n*z*p(n - 1, z) - p(n - 2, z) fi end: %p A369585 seq(seq(coeff(p(n, z), z, k), k = 0..n), n = 0..9); %t A369585 Table[CoefficientList[Expand[ResourceFunction["LommelR"][n, 1, 1/z]], z], {n, 0, 8}] // MatrixForm %Y A369585 Diagonals include: A000165 (main diagonal), A014479, A286725. %Y A369585 Columns include bisections of: A001105, A254371. %Y A369585 Cf. A093985 (row sums), A036243 (abs row sums), A369117. %K A369585 sign,tabl %O A369585 0,3 %A A369585 _Peter Luschny_, Jan 30 2024