cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369595 Array read by downward antidiagonals: A(n,k) = A(n-1,k+2) + Sum_{j=0..k} binomial(k,j)*A(n-1,j) with A(0,k) = 1, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 2, 1, 3, 7, 1, 5, 14, 37, 1, 9, 30, 89, 264, 1, 17, 68, 227, 737, 2433, 1, 33, 162, 611, 2169, 7696, 27913, 1, 65, 404, 1727, 6695, 25480, 98093, 386906, 1, 129, 1050, 5099, 21573, 87964, 358993, 1490687, 6346119, 1, 257, 2828, 15647, 72287, 315688, 1364681, 5959213, 26542518, 121159373
Offset: 0

Views

Author

Mikhail Kurkov, Jan 27 2024

Keywords

Examples

			Array begins:
=============================================================
n\k|     0     1      2       3       4        5        6 ...
---+---------------------------------------------------------
0  |     1     1      1       1       1        1        1 ...
1  |     2     3      5       9      17       33       65 ...
2  |     7    14     30      68     162      404     1050 ...
3  |    37    89    227     611    1727     5099    15647 ...
4  |   264   737   2169    6695   21573    72287   251109 ...
5  |  2433  7696  25480   87964  315688  1174756  4522480 ...
6  | 27913 98093 358993 1364681 5376121 21901073 92076673 ...
  ...
		

Crossrefs

Cf. A135920.

Programs

  • PARI
    A(m, n=m)={my(r=vectorv(m+1), v=vector(n+2*m+1, k, 1)); r[1] = v[1..n+1];
    for(i=1, m, v=vector(#v-2, k, v[k+2] + sum(j=1, k, binomial(k-1, j-1)*v[j])); r[1+i] = v[1..n+1]); Mat(r)}
    { A(6) }

Formula

Conjecture: A(n,0) = A135920(n+1). - Mikhail Kurkov, Oct 27 2024