This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369628 #8 Jan 29 2024 19:27:33 %S A369628 0,1,2,3,6,15,36,85,213,549,1423,3723,9882,26508,71579,194533,532120, %T A369628 1463561,4044075,11221727,31260192,87386579,245058185,689209348, %U A369628 1943530845,5494106583,15566303698,44196212866,125727934145,358317169828,1022916667066,2924843243594 %N A369628 Number of solutions to k_1 + 2*k_2 + ... + n*k_n = 1, where k_i are from {-1,0,1}, i=1..n. %F A369628 a(n) = [x^1] Product_{k=1..n} (x^k + 1 + 1/x^k). %F A369628 a(n) = [x^(n*(n+1)/2+1)] Product_{k=1..n} (1 + x^k + x^(2*k)). %t A369628 Table[Coefficient[Product[(x^k + 1 + 1/x^k), {k, 1, n}], x, 1], {n, 0, 31}] %o A369628 (Python) %o A369628 from itertools import count, islice %o A369628 from collections import Counter %o A369628 def A369628_gen(): # generator of terms %o A369628 ccount = Counter({0:1}) %o A369628 yield 0 %o A369628 for i in count(1): %o A369628 bcount = Counter(ccount) %o A369628 for a in ccount: %o A369628 bcount[a+i] += ccount[a] %o A369628 bcount[a-i] += ccount[a] %o A369628 ccount = bcount %o A369628 yield(ccount[1]) %o A369628 A369628_list = list(islice(A369628_gen(),20)) # _Chai Wah Wu_, Jan 29 2024 %Y A369628 Cf. A007576, A063866, A316706. %K A369628 nonn %O A369628 0,3 %A A369628 _Ilya Gutkovskiy_, Jan 28 2024