This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369633 #20 Jan 29 2024 09:15:58 %S A369633 1,8,7,0,7,3,0,7,2,5,0,9,7,7,9,7,8,9,4,5,0,9,5,9,1,5,7,6,7,7,7,6,6,6, %T A369633 3,1,9,5,7,8,1,4,8,0,2,9,6,2,2,1,5,9,3,7,6,4,6,5,5,3,5,4,8,4,1,9,2,7, %U A369633 1,1,6,3,0,0,4,6,5,3,4,8,5,5,9,0,1,3,2,2,3,0,6,2,1,0,6,3,3,1,0,1 %N A369633 Decimal expansion of integral of frac(1/x)^3 dx for x=0 to 1. %D A369633 Ovidiu Furdui, Limits, Series, and Fractional Part Integrals, Problems in Mathematical Analysis, Springer, 2013. See p. 100. %F A369633 Integral_{x=0..1} frac(1/x)^3 dx = (3/2)*log(2*Pi) - 6*log(A) - gamma - 1/2 = 0.1870730725..., where A is the Glaisher-Kinkelin constant. %F A369633 Equals 3*log(2) - 3/2 + 3 * Sum_{k>=1} ((-1)^k/(k+3))*(zeta(k+1)-1). %F A369633 From _Vaclav Kotesovec_, Jan 29 2024: (Start) %F A369633 Equals 6 * Sum_{k>=1} (zeta(k+1) - 1) / ((k+1)*(k+2)*(k+3)). %F A369633 Equals -1/2 + 6 * Sum_{k>=2} zeta(k) / (k*(k+1)*(k+2)). (End) %e A369633 0.18707307250977978945095915767776663195781480296221... %t A369633 RealDigits[3*Log[2*Pi]/2 - 6*Log[Glaisher] - EulerGamma - 1/2, 10, 120][[1]] (* _Amiram Eldar_, Jan 28 2024 *) %o A369633 (PARI) 3*log(2*Pi)/2 + 6*zeta'(-1) - Euler - 1 \\ _Amiram Eldar_, Jan 28 2024 %Y A369633 Cf. A074962, A345208. %K A369633 nonn,cons %O A369633 0,2 %A A369633 _Benoit Cloitre_, Jan 28 2024