cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369634 Decimal expansion of the infinite product of the Zeta Functions with arguments that are multiples of 3.

This page as a plain text file.
%I A369634 #17 Jan 29 2024 03:55:41
%S A369634 1,2,2,5,7,0,4,7,0,5,1,2,8,4,9,7,4,0,9,5,2,0,4,5,7,6,7,1,5,8,8,9,7,4,
%T A369634 4,8,2,4,8,9,9,3,3,8,4,2,2,3,2,2,4,5,5,9,6,6,7,6,2,6,9,2,8,7,0,1,1,9,
%U A369634 1,8,0,9,1,8,3,7,3,5,5,4,9,5,3,0,7,6,9,9,5,6,1,0,4,2,7,1,3,1,4,9,7,3,6,7,8
%N A369634 Decimal expansion of the infinite product of the Zeta Functions with arguments that are multiples of 3.
%C A369634 Dirichlet generating function of A000688 evaluated at s=3.
%F A369634 Equals Product_{k>=1} zeta(3*k) = A002117 * A013664 * A013667 * A013670 *...
%e A369634 1.22570470512849740952045767158897448248993384223224...
%p A369634 evalf(product(Zeta(3*k), k = 1 .. infinity), 120) # _Amiram Eldar_, Jan 28 2024
%o A369634 (PARI) prodinf(k=1,zeta(3*k)) \\ _Amiram Eldar_, Jan 28 2024
%Y A369634 Cf. A000688, A021002, A080729.
%Y A369634 Cf. A002117, A013664, A013667, A013670.
%K A369634 nonn,cons
%O A369634 1,2
%A A369634 _R. J. Mathar_, Jan 28 2024