cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369645 Numbers k for which the difference A051903(k) - A328114(k) reaches a new maximum in range 1..k, where A051903 is the maximal exponent in the prime factorization of n, and A328114 is the maximal digit in the primorial base expansion of n.

This page as a plain text file.
%I A369645 #20 Feb 02 2024 16:10:19
%S A369645 1,2,8,32,256,2560,30720,32768,4194304,20971520,58720256,234881024,
%T A369645 536870912,1342177280
%N A369645 Numbers k for which the difference A051903(k) - A328114(k) reaches a new maximum in range 1..k, where A051903 is the maximal exponent in the prime factorization of n, and A328114 is the maximal digit in the primorial base expansion of n.
%H A369645 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%e A369645            k   factorization   max.exp.  in primorial  max digit  diff
%e A369645                                              base
%e A369645            1                       0,            1,       1,      -1
%e A369645            2 = 2^1,                1,           10,       1,       0
%e A369645            8 = 2^3,                3,          110,       1,       2
%e A369645           32 = 2^5,                5,         1010,       1,       4
%e A369645          256 = 2^8,                8,        11220,       2,       6
%e A369645         2560 = 2^9 * 5^1,          9,       111120,       2,       7
%e A369645        30720 = 2^11 * 3^1 * 5^1,  11,      1032000,       3,       8
%e A369645        32768 = 2^15,              15,      1120110,       2,      13
%e A369645      4194304 = 2^22,              22,     83876020,       8,      14
%e A369645     20971520 = 2^22 * 5^1,        22,    231462310,       6,      16
%e A369645     58720256 = 2^23 * 7^1,        23,    610501410,       6,      17
%e A369645    234881024 = 2^25 * 7^1,        25,   1141710210,       7,      18
%e A369645    536870912 = 2^29,              29,   296AA71010,      10,      19
%e A369645   1342177280 = 2^28 * 5^1,        28,   6071712310,       7,      21.
%e A369645 On the penultimate row, letter "A" in the primorial base expansion stands for ten (10 in decimal), as 2^29 = 0*prime(0)# + 1*prime(1)# + 0*prime(2)# + 1*prime(3)# + 7*prime(4)# + 10*prime(5)# + 10*prime(6)# + 6*prime(7)# + 9*prime(8)# + 2*prime(9)#, where prime(n)# = A002110(n).
%o A369645 (PARI)
%o A369645 A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
%o A369645 A328114(n) = { my(s=0, p=2); while(n, s = max(s, (n%p)); n = n\p; p = nextprime(1+p)); (s); };
%o A369645 A350074(n) = (A328114(n) - A051903(n));
%o A369645 m=A350074(1); print1(1,", "); for(n=2,oo,x=A350074(n); if(x<m,print1(n,", "); m=x));
%Y A369645 Positions of records for -A350074(n).
%Y A369645 Cf. A002110, A049345, A051903, A328114.
%Y A369645 Cf. also A369646, A369647.
%Y A369645 After the initial 1, subsequence of A351038, after the two initial terms, subsequence of A350075.
%K A369645 nonn,more
%O A369645 1,2
%A A369645 _Antti Karttunen_, Feb 01 2024