This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369646 #12 Feb 02 2024 16:11:47 %S A369646 1,8,16,832,1024,95232,131072,2097152,1006632960,1090519040 %N A369646 Numbers k such that the difference A051903(k) - A328114(A003415(k)) reaches a new maximum in range 1..k, where A051903 is the maximal exponent in the prime factorization of n, A328114 is the maximal digit in the primorial base expansion of n, and A003415 is the arithmetic derivative. %H A369646 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %e A369646 k factorization max.exp. k' in primorial max digit diff %e A369646 base %e A369646 1 0, 0, 0, 0 %e A369646 8 = 2^3, 3, 200, 2, 1 %e A369646 16 = 2^4, 4, 1010, 1, 3 %e A369646 832 = 2^6 * 13^1, 6, 111120, 2, 4 %e A369646 1024 = 2^10, 10, 222310, 3, 7 %e A369646 95232 = 2^10 * 3^1 * 31^1, 10, 10021220, 2, 8 %e A369646 131072 = 2^17, 17, 23132010, 3, 14 %e A369646 2097152 = 2^21, 21, 252354100, 5, 16 %e A369646 1006632960 = 2^26 * 3^1 * 5^1, 26, 23194866010, 9, 17 %e A369646 1090519040 = 2^24 * 5^1 * 13^1, 24, 22053155300, 5, 19. %e A369646 Here k' stands for the arithmetic derivative of k, A003415(k). Primorial base expansion is obtained with A049345. %o A369646 (PARI) %o A369646 A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); %o A369646 A051903(n) = if((1==n),0,vecmax(factor(n)[, 2])); %o A369646 A328114(n) = { my(s=0, p=2); while(n, s = max(s, (n%p)); n = n\p; p = nextprime(1+p)); (s); }; %o A369646 A351097(n) = (A328114(A003415(n))-A051903(n)); %o A369646 m=A351097(1); print1(1,", "); for(n=2,oo,x=A351097(n); if(x<m,print1(n,", "); m=x)); %Y A369646 Positions of records for -A351097(n). %Y A369646 After the initial 1, a subsequence of A351098. %Y A369646 Cf. A002110, A003415, A049345, A051903, A328114. %Y A369646 Cf. also A369645, A369647. %K A369646 nonn,more %O A369646 1,2 %A A369646 _Antti Karttunen_, Feb 02 2024