This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369647 #20 Feb 04 2024 09:00:33 %S A369647 1,2,9,16,108,9024,2990880,995336192,1805726080 %N A369647 Nonzero numbers k in A341518 for which A051903(k) attains novel values. %C A369647 Indices of record values of A051903 attained for the terms of A341518 is a subsequence: 1, 2, 9, 16, 9024, 995336192. %e A369647 k factorization max.exp k' A049345(k') %e A369647 1 0, 0, 0 %e A369647 2 = 2^1, 1, 1, 1 %e A369647 9 = 3^2, 2, 6, 100 %e A369647 16 = 2^4, 4, 32, 1010 %e A369647 108 = 2^2 * 3^3, 3, 216, 10100 %e A369647 9024 = 2^6 * 3 * 47, 6, 30272, 1011010 %e A369647 2990880 = 2^5 * 3^2 * 5 * 31 * 67, 5, 10210416, 110010100 %e A369647 995336192 = 2^13 * 121501, 13, 6469693440, 10000010000 %e A369647 1805726080 = 2^7 * 5 * 157 * 17971, 7, 6692788416, 11000100100. %e A369647 See also the examples at A351073 and A369649. %o A369647 (PARI) %o A369647 A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); %o A369647 A051903(n) = if((1==n),0,vecmax(factor(n)[, 2])); %o A369647 ismaxprimobasedigit_at_most(n,k) = { my(s=0, p=2); while(n, if((n%p)>k, return(0)); n = n\p; p = nextprime(1+p)); (1); }; %o A369647 isA341518(n) = ismaxprimobasedigit_at_most(A003415(n),1); %o A369647 m=Map(); for(n=1,2990880,if(isA341518(n),e=A051903(n);if(!mapisdefined(m,e),mapput(m,e,n);print1(n,", ")))); %Y A369647 Cf. A003415, A049345, A051903, A276086, A327859, A328114, A341518. %Y A369647 Cf. also A351073, A369642, A369646, A369649. %K A369647 nonn,hard,more %O A369647 1,2 %A A369647 _Antti Karttunen_, Feb 02 2024