cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369669 The greatest common divisor of the first and the second arithmetic derivative of n.

This page as a plain text file.
%I A369669 #12 Feb 10 2024 18:52:24
%S A369669 0,0,1,1,4,1,1,1,4,1,1,1,16,1,3,4,16,1,1,1,4,1,1,1,4,1,1,27,16,1,1,1,
%T A369669 16,1,1,4,4,1,1,16,4,1,1,1,16,1,5,1,16,1,3,4,4,1,27,16,4,1,1,1,4,1,1,
%U A369669 1,64,3,1,1,12,1,1,1,4,1,1,1,16,3,1,1,16,108,1,1,4,1,3,16,4,1,1,4,16,1,7,4,16,1,1,5
%N A369669 The greatest common divisor of the first and the second arithmetic derivative of n.
%H A369669 Antti Karttunen, <a href="/A369669/b369669.txt">Table of n, a(n) for n = 0..16384</a>
%F A369669 a(n) = gcd(A003415(n), A068346(n)).
%F A369669 For n >= 2, a(n) = A085731(A003415(n)).
%o A369669 (PARI)
%o A369669 A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
%o A369669 A369669(n) = { my(d=A003415(n)); gcd(d, A003415(d)); };
%Y A369669 Cf. A003415, A068346, A085731, A370130 [= a(A276086(n))].
%Y A369669 Cf. A328393 (positions of 1's), A354874 (their characteristic function).
%Y A369669 Cf. A327864 (positions of even terms, also positions of multiples of 4).
%Y A369669 Cf. A370119 (positions of multiples of 3).
%K A369669 nonn
%O A369669 0,5
%A A369669 _Antti Karttunen_, Feb 10 2024