This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369669 #12 Feb 10 2024 18:52:24 %S A369669 0,0,1,1,4,1,1,1,4,1,1,1,16,1,3,4,16,1,1,1,4,1,1,1,4,1,1,27,16,1,1,1, %T A369669 16,1,1,4,4,1,1,16,4,1,1,1,16,1,5,1,16,1,3,4,4,1,27,16,4,1,1,1,4,1,1, %U A369669 1,64,3,1,1,12,1,1,1,4,1,1,1,16,3,1,1,16,108,1,1,4,1,3,16,4,1,1,4,16,1,7,4,16,1,1,5 %N A369669 The greatest common divisor of the first and the second arithmetic derivative of n. %H A369669 Antti Karttunen, <a href="/A369669/b369669.txt">Table of n, a(n) for n = 0..16384</a> %F A369669 a(n) = gcd(A003415(n), A068346(n)). %F A369669 For n >= 2, a(n) = A085731(A003415(n)). %o A369669 (PARI) %o A369669 A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); %o A369669 A369669(n) = { my(d=A003415(n)); gcd(d, A003415(d)); }; %Y A369669 Cf. A003415, A068346, A085731, A370130 [= a(A276086(n))]. %Y A369669 Cf. A328393 (positions of 1's), A354874 (their characteristic function). %Y A369669 Cf. A327864 (positions of even terms, also positions of multiples of 4). %Y A369669 Cf. A370119 (positions of multiples of 3). %K A369669 nonn %O A369669 0,5 %A A369669 _Antti Karttunen_, Feb 10 2024