This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369675 #14 Feb 07 2024 07:48:13 %S A369675 2,25,2312,1690000,9773138432,454542400000000,167983232813812416512, %T A369675 499835663627223040000000000,11821129880009981801801971612516352, %U A369675 2251076882713432721110048178176000000000000,3407215210591493267547957182357614317126952945713152,41525058946342607360045945411073338768005424742400000000000000 %N A369675 a(n) = Product_{k=0..n} (4^k + 4^(n-k)). %F A369675 a(n) = Product_{k=0..n} (4^k + 4^(n-k)). %F A369675 a(n) = 4^(n*(n+1)) * Product_{k=0..n} (1/4^k + 1/4^(n-k)). %F A369675 a(n) = 4^(n*(n+1)/2) * Product_{k=0..n} (1 + 1/4^(n-2*k)). %F A369675 From _Vaclav Kotesovec_, Feb 07 2024: (Start) %F A369675 a(n) ~ c * 4^(3*n^2/4 + n), where %F A369675 c = 2.276671433133289... = QPochhammer(-1, 1/16)^2/2 if n is even and %F A369675 c = 2.284052876870834... = sqrt(2) * QPochhammer(-4, 1/16)^2 / 25 if n is odd. (End) %e A369675 a(0) = (1 + 1) = 2; %e A369675 a(1) = (1 + 4)*(4 + 1) = 25; %e A369675 a(2) = (1 + 4^2)*(4 + 4)*(4^2 + 1) = 2312; %e A369675 a(3) = (1 + 4^3)*(4 + 4^2)*(4^2 + 4)*(4^3 + 1) = 1690000; %e A369675 a(4) = (1 + 4^4)*(4 + 4^3)*(4^2 + 4^2)*(4^3 + 4)*(4^4 + 1) = 9773138432; %e A369675 a(5) = (1 + 4^5)*(4 + 4^4)*(4^2 + 4^3)*(4^3 + 4^2)*(4^4 + 4)*(4^5 + 1) = 454542400000000; %e A369675 ... %e A369675 RELATED SERIES. %e A369675 Let F(x) be the g.f. of A369557, then %e A369675 F(1/4) = 2 + 25/4^2 + 2312/4^6 + 1690000/4^12 + 9773138432/4^20 + 454542400000000/4^30 + ... + a(n)/4^(n*(n+1)) + ... = 4.236976626306045459467696438142250301516563681... %o A369675 (PARI) {a(n) = prod(k=0, n, 4^k + 4^(n-k))} %o A369675 for(n=0, 15, print1(a(n), ", ")) %Y A369675 Cf. A369673, A369674, A369676, A369557. %K A369675 nonn %O A369675 0,1 %A A369675 _Paul D. Hanna_, Feb 06 2024