This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369692 #35 Mar 21 2025 07:00:48 %S A369692 1,2,3,7,11,14,20,26,30,39,47,52,64,74,80,95 %N A369692 Connected domination number of the n X n grid graph. %H A369692 Alexander D. Healy, <a href="/A369692/a369692.pdf">Examples of (near-)optimal dominating sets for n <= 12</a> %H A369692 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ConnectedDominationNumber.html">Connected Domination Number</a>. %H A369692 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GridGraph.html">Grid Graph</a>. %F A369692 a(3*n) <= n*(3*n+1); a(3*n-1) <= 3*n^2 - 1; a(3*n-2) <= (n-1)*(3*n+1). Conjecturally these inequalities hold with equality for n > 1. - _Andrew Howroyd_, Mar 06 2024 %e A369692 From _Andrew Howroyd_, Mar 06 2024: (Start) %e A369692 a(16) = 95 = 16 + 5*14 + 4*2 + 1. %e A369692 . . . . . . . . . . . . . . . . %e A369692 X X X X X X X X X X X X X X X X %e A369692 . X . . X . . X . . X . . X . . %e A369692 . X . . X . . X . . X . . X . . %e A369692 . X . . X . . X . . X . . X X X %e A369692 . X . . X . . X . . X . . X . . %e A369692 . X . . X . . X . . X . . X . . %e A369692 . X . . X . . X . . X . . X X X %e A369692 . X . . X . . X . . X . . X . . %e A369692 . X . . X . . X . . X . . X . . %e A369692 . X . . X . . X . . X . . X X X %e A369692 . X . . X . . X . . X . . X . . %e A369692 . X . . X . . X . . X . . X . . %e A369692 . X . . X . . X . . X . . X X X %e A369692 . X . . X . . X . . X . . X . . %e A369692 . X . . X . . X . . X . . X X . %e A369692 (End) %Y A369692 Cf. A104519, A287690, A302488, A370428. %Y A369692 Cf. A381730 (numbers of minimum connected dominating sets). %K A369692 nonn,more %O A369692 1,2 %A A369692 _Alexander D. Healy_, Feb 25 2024 %E A369692 a(10)-a(16) from _Andrew Howroyd_, Feb 25 2024