This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369709 #13 Feb 07 2024 11:51:14 %S A369709 1,3,12,62,332,1974,12345,80006,531524,3602358,24836850,173607568, %T A369709 1226700784,8748861828,62922343566,455805857978,3321800235936, %U A369709 24338840717799,179217603427200,1325490660318216,9841000101286172,73319407735938570,548051770664957631,4108826483323392880 %N A369709 Maximal coefficient of (1 + x)^3 * (1 + x^2)^3 * (1 + x^3)^3 * ... * (1 + x^n)^3. %t A369709 Table[Max[CoefficientList[Product[(1 + x^k)^3, {k, 1, n}], x]], {n, 0, 23}] %o A369709 (PARI) a(n) = vecmax(Vec(prod(k=1, n, (1+x^k)^3))); \\ _Michel Marcus_, Jan 30 2024 %o A369709 (Python) %o A369709 from collections import Counter %o A369709 def A369709(n): %o A369709 c = {0:1} %o A369709 for k in range(1,n+1): %o A369709 d = Counter(c) %o A369709 for j in c: %o A369709 a = c[j] %o A369709 d[j+k] += 3*a %o A369709 d[j+2*k] += 3*a %o A369709 d[j+3*k] += a %o A369709 c = d %o A369709 return max(c.values()) # _Chai Wah Wu_, Feb 07 2024 %Y A369709 Cf. A022568, A025591, A047653. %K A369709 nonn %O A369709 0,2 %A A369709 _Ilya Gutkovskiy_, Jan 29 2024