cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369712 Maximal coefficient of (1 + x) * (1 + x^2)^2 * (1 + x^3)^3 * ... * (1 + x^n)^n.

This page as a plain text file.
%I A369712 #10 Jan 30 2024 11:04:01
%S A369712 1,1,2,9,79,1702,78353,7559080,1509040932,619097417818,
%T A369712 519429629728698,887531129680197018,3078434842626707386602,
%U A369712 21627792113204714623569767,307257554772242590850211062866,8813577747274880345454470354985336,509819403352972623999938010230619997952
%N A369712 Maximal coefficient of (1 + x) * (1 + x^2)^2 * (1 + x^3)^3 * ... * (1 + x^n)^n.
%p A369712 b:= proc(n) option remember; `if`(n=0, 1, expand(b(n-1)*(1+x^n)^n)) end:
%p A369712 a:= n-> max(coeffs(b(n))):
%p A369712 seq(a(n), n=0..16);  # _Alois P. Heinz_, Jan 29 2024
%t A369712 Table[Max[CoefficientList[Product[(1 + x^k)^k, {k, 1, n}], x]], {n, 0, 16}]
%o A369712 (PARI) a(n) = vecmax(Vec(prod(k=1, n, (1+x^k)^k))); \\ _Michel Marcus_, Jan 30 2024
%Y A369712 Cf. A025591, A026007, A047653.
%K A369712 nonn
%O A369712 0,3
%A A369712 _Ilya Gutkovskiy_, Jan 29 2024