A369720 The sum of divisors of the smallest cubefull number that is a multiple of n.
1, 15, 40, 15, 156, 600, 400, 15, 40, 2340, 1464, 600, 2380, 6000, 6240, 31, 5220, 600, 7240, 2340, 16000, 21960, 12720, 600, 156, 35700, 40, 6000, 25260, 93600, 30784, 63, 58560, 78300, 62400, 600, 52060, 108600, 95200, 2340, 70644, 240000, 81400, 21960, 6240
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := (p^If[e <= 2, 4, e + 1]-1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50]
-
PARI
a(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i,2] <= 2, f[i,2] = 3)); sigma(f);}
Formula
Multiplicative with a(p) = p^3 + p^2 + p + 1 for e <= 2, and a(p^e) = (p^(e+1)-1)/(p-1) for e >= 3.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 + 1/p^(s-3) + 1/p^(s-2) - 1/p^(2*s-4) - 1/p^(2*s-3) - 1/p^(2*s-2) + 1/p^(4*s-4)).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = zeta(3) * zeta(4) * Product_{p prime} (1 - 1/p^3 - 1/p^4 + 1/p^7 + 1/p^12 - 1/p^13) = 1.00015013207437782094... .