cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A369720 The sum of divisors of the smallest cubefull number that is a multiple of n.

Original entry on oeis.org

1, 15, 40, 15, 156, 600, 400, 15, 40, 2340, 1464, 600, 2380, 6000, 6240, 31, 5220, 600, 7240, 2340, 16000, 21960, 12720, 600, 156, 35700, 40, 6000, 25260, 93600, 30784, 63, 58560, 78300, 62400, 600, 52060, 108600, 95200, 2340, 70644, 240000, 81400, 21960, 6240
Offset: 1

Views

Author

Amiram Eldar, Jan 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^If[e <= 2, 4, e + 1]-1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50]
  • PARI
    a(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i,2] <= 2, f[i,2] = 3)); sigma(f);}

Formula

a(n) = A000203(A356193(n)).
Multiplicative with a(p) = p^3 + p^2 + p + 1 for e <= 2, and a(p^e) = (p^(e+1)-1)/(p-1) for e >= 3.
a(n) >= A000203(n), with equality if and only if n is cubefull (A036966).
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 + 1/p^(s-3) + 1/p^(s-2) - 1/p^(2*s-4) - 1/p^(2*s-3) - 1/p^(2*s-2) + 1/p^(4*s-4)).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = zeta(3) * zeta(4) * Product_{p prime} (1 - 1/p^3 - 1/p^4 + 1/p^7 + 1/p^12 - 1/p^13) = 1.00015013207437782094... .

A369718 The sum of unitary divisors of the smallest powerful number that is a multiple of n.

Original entry on oeis.org

1, 5, 10, 5, 26, 50, 50, 9, 10, 130, 122, 50, 170, 250, 260, 17, 290, 50, 362, 130, 500, 610, 530, 90, 26, 850, 28, 250, 842, 1300, 962, 33, 1220, 1450, 1300, 50, 1370, 1810, 1700, 234, 1682, 2500, 1850, 610, 260, 2650, 2210, 170, 50, 130, 2900, 850, 2810, 140
Offset: 1

Views

Author

Amiram Eldar, Jan 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, p^2 + 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, 1 + f[i,1]^2, 1 + f[i,1]^f[i,2]));}

Formula

a(n) = A034448(A197863(n)).
Multiplicative with a(p) = p^2 + 1 and a(p^e) = p^e + 1 for e >= 2.
a(n) >= A034448(n), with equality if and only if n is powerful (A001694).
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 + 1/p^(s-2) - 1/p^(s-1) - 1/p^(2*s-3) + 1/p^(3*s-3) - 1/p^(3*s-2)).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(2) * zeta(3) * Product_{p prime} (1 - 2/p^2 + 1/p^4 + 1/p^6 - 2/p^7 + 1/p^8) = 0.73644353930922037459... .

A369719 The number of divisors of the smallest cubefull number that is a multiple of n.

Original entry on oeis.org

1, 4, 4, 4, 4, 16, 4, 4, 4, 16, 4, 16, 4, 16, 16, 5, 4, 16, 4, 16, 16, 16, 4, 16, 4, 16, 4, 16, 4, 64, 4, 6, 16, 16, 16, 16, 4, 16, 16, 16, 4, 64, 4, 16, 16, 16, 4, 20, 4, 16, 16, 16, 4, 16, 16, 16, 16, 16, 4, 64, 4, 16, 16, 7, 16, 64, 4, 16, 16, 64, 4, 16, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e <= 2, 4, e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x <= 2, 4, x+1), factor(n)[, 2]));
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - X)^2 * ((1 + 2*X - 3*X^2 + X^4)))[n], ", ")) \\ Vaclav Kotesovec, Jan 30 2024

Formula

a(n) = A000005(A356193(n)).
Multiplicative with a(p) = 4 for e <= 2, and a(p^e) = e+1 for e >= 3.
a(n) >= A000005(n), with equality if and only if n is cubefull (A036966).
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 + 2/p^s - 3/p^(2*s) + 1/p^(4*s)).
Dirichlet g.f.: zeta(s)^4 * Product_{p prime} (1 + 1/p^(6*s) - 2/p^(5*s) - 2/p^(4*s) + 8/p^(3*s) - 6/p^(2*s)). - Vaclav Kotesovec, Jan 30 2024
Showing 1-3 of 3 results.