cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369735 Number of solutions to 1^3*k_1 + 2^3*k_2 + ... + n^3*k_n = 1, where k_i are from {-1,0,1}, i=1..n.

This page as a plain text file.
%I A369735 #7 Jan 30 2024 20:09:42
%S A369735 0,1,1,1,1,1,3,4,6,15,28,56,125,287,646,1540,3625,8484,21167,51458,
%T A369735 126342,323126,811538,2052501,5339265,13751212,35589866,94032931,
%U A369735 246791641,650227636,1739032299,4630165425,12373805281,33429284691,90073865814,243460560324
%N A369735 Number of solutions to 1^3*k_1 + 2^3*k_2 + ... + n^3*k_n = 1, where k_i are from {-1,0,1}, i=1..n.
%F A369735 a(n) = [x^1] Product_{k=1..n} (x^(k^3) + 1 + 1/x^(k^3)).
%p A369735 b:= proc(n, i) option remember; `if`(n>(i*(i+1)/2)^2, 0,
%p A369735      `if`(i=0, 1, b(n, i-1)+b(n+i^3, i-1)+b(abs(n-i^3), i-1)))
%p A369735     end:
%p A369735 a:= n-> b(1, n):
%p A369735 seq(a(n), n=0..35);  # _Alois P. Heinz_, Jan 30 2024
%t A369735 Table[Coefficient[Product[(x^(k^3) + 1 + 1/x^(k^3)), {k, 1, n}], x, 1], {n, 0, 33}]
%Y A369735 Cf. A007576, A063866, A369345, A369437, A369628, A369734.
%K A369735 nonn
%O A369735 0,7
%A A369735 _Ilya Gutkovskiy_, Jan 30 2024