cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369737 a(n) = b(n, 1/2) where b(n, x) = (Pi/4)*(Y(0, x)*J(n, x) - J(0, x)*Y(n, x)) and Y, J are Bessel functions.

This page as a plain text file.
%I A369737 #6 Feb 12 2024 13:29:38
%S A369737 0,1,4,31,368,5857,116772,2796671,78190016,2499283841,89896028260,
%T A369737 3593341846559,158017145220336,7581229628729569,394065923548717252,
%U A369737 22060110489099436543,1323212563422417475328,84663543948545618984449,5755797775937679673467204,414332776323564390870654239
%N A369737 a(n) = b(n, 1/2) where b(n, x) = (Pi/4)*(Y(0, x)*J(n, x) - J(0, x)*Y(n, x)) and Y, J are Bessel functions.
%p A369737 b := (n, x) -> (Pi/4)*(BesselY(0, x)*BesselJ(n, x)-BesselJ(0, x)*BesselY(n, x)):
%p A369737 a := n -> simplify(b(n, 1/2)): seq(a(n), n = 0..19);
%t A369737 a = (Pi/4)*(BesselY[0, 1/2] * BesselJ[n, 1/2] - BesselJ[0, 1/2] * BesselY[n, 1/2]); Table[Round[a], {n, 0, 19}]
%Y A369737 Cf. A093985, A036243.
%K A369737 nonn
%O A369737 0,3
%A A369737 _Peter Luschny_, Jan 30 2024