cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369757 The number of divisors of the smallest cubefull exponentially odd number that is divisible by n.

This page as a plain text file.
%I A369757 #13 Feb 03 2024 10:17:04
%S A369757 1,4,4,4,4,16,4,4,4,16,4,16,4,16,16,6,4,16,4,16,16,16,4,16,4,16,4,16,
%T A369757 4,64,4,6,16,16,16,16,4,16,16,16,4,64,4,16,16,16,4,24,4,16,16,16,4,16,
%U A369757 16,16,16,16,4,64,4,16,16,8,16,64,4,16,16,64,4,16,4
%N A369757 The number of divisors of the smallest cubefull exponentially odd number that is divisible by n.
%H A369757 Amiram Eldar, <a href="/A369757/b369757.txt">Table of n, a(n) for n = 1..10000</a>
%F A369757 a(n) = A000005(A356192(n)).
%F A369757 Multiplicative with a(p^e) = max(e,3) + 1 if e is odd, and e+2 if e is even.
%F A369757 a(n) >= A000005(n), with equality if and only if n is cubefull exponentially odd number (A335988).
%F A369757 Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 + 3/p^s - 1/p^(2*s) - 3/p^(3*s) + 2/p^(4*s)).
%F A369757 From _Vaclav Kotesovec_, Feb 02 2024: (Start)
%F A369757 Dirichlet g.f.: zeta(s)^4 * Product_{p prime} (1 + (7*p^(2*s) + 2*p^(3*s) - 6*p^(4*s) - 7*p^s + 2) / ((p^s+1)*p^(5*s))).
%F A369757 Sum_{k=1..n} a(k) = c * n*log(n)^3/6 + O(n*log(n)^2), where c = Product_{p prime} (1 - (6*p^4 - 2*p^3 - 7*p^2 + 7*p - 2) / ((p+1)*p^5)) = 0.124604542136592401049820049658828040278... (End)
%t A369757 f[p_, e_] := If[OddQ[e], Max[e, 3] + 1, e + 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A369757 (PARI) a(n) = vecprod(apply(x -> if(x%2, max(x, 3) + 1, x + 2), factor(n)[, 2]));
%Y A369757 Cf. A000005, A335988, A356192, A365348, A369758, A369759.
%K A369757 nonn,easy,mult
%O A369757 1,2
%A A369757 _Amiram Eldar_, Jan 31 2024