cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369758 The sum of divisors of the smallest cubefull exponentially odd number that is divisible by n.

This page as a plain text file.
%I A369758 #13 Feb 03 2024 10:22:14
%S A369758 1,15,40,15,156,600,400,15,40,2340,1464,600,2380,6000,6240,63,5220,
%T A369758 600,7240,2340,16000,21960,12720,600,156,35700,40,6000,25260,93600,
%U A369758 30784,63,58560,78300,62400,600,52060,108600,95200,2340,70644,240000,81400,21960,6240
%N A369758 The sum of divisors of the smallest cubefull exponentially odd number that is divisible by n.
%C A369758 First differs from A369720 at n = 16.
%H A369758 Amiram Eldar, <a href="/A369758/b369758.txt">Table of n, a(n) for n = 1..10000</a>
%F A369758 a(n) = A000203(A356192(n)).
%F A369758 Multiplicative with a(p) = p^3 + p^2 + p + 1, a(p^e) = (p^(e+1)-1)/(p-1) for an odd e >= 3, and a(p^e) = (p^(e+2)-1)/(p-1) for an even e.
%F A369758 a(n) >= A000203(n), with equality if and only if n is cubefull exponentially odd number (A335988).
%F A369758 Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-3) + 1/p^(s-2) + 1/p^(s-1) - 1/p^(2*s-2) - 1/p^(3*s-5) - 1/p^(3*s-4) - 1/p^(3*s-3) + 1/p^(4*s-5) + 1/p^(4*s-4)).
%F A369758 Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = zeta(4) * zeta(6) * Product_{p prime} (1 - 1/p^4 - 1/p^6 + 1/p^10 + 1/p^11 - 1/p^13) = 1.00040193512214077945... .
%F A369758 Equivalently, c = Product_{p prime} (1 + 1/(p^3*(p^4 - 1)*(p^4 + p^2 + 1))). - _Vaclav Kotesovec_, Feb 02 2024
%t A369758 f[p_, e_] := (p^If[OddQ[e], Max[e, 3] + 1, e + 2] - 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A369758 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^if(f[i,2]%2, max(f[i,2], 3) + 1, f[i,2] + 2) - 1)/(f[i,1] - 1));}
%o A369758 (Python)
%o A369758 from math import prod
%o A369758 from sympy import factorint
%o A369758 def A369758(n): return prod((p**((3 if e==1 else e)+1+(e&1^1))-1)//(p-1) for p,e in factorint(n).items()) # _Chai Wah Wu_, Feb 03 2024
%Y A369758 Cf. A000203, A335988, A356192, A365349, A369720, A369757, A369759.
%Y A369758 Cf. A013662, A013664.
%K A369758 nonn,easy,mult
%O A369758 1,2
%A A369758 _Amiram Eldar_, Jan 31 2024