This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369759 #8 Feb 02 2024 11:01:51 %S A369759 1,9,28,9,126,252,344,9,28,1134,1332,252,2198,3096,3528,33,4914,252, %T A369759 6860,1134,9632,11988,12168,252,126,19782,28,3096,24390,31752,29792, %U A369759 33,37296,44226,43344,252,50654,61740,61544,1134,68922,86688,79508,11988,3528,109512 %N A369759 The sum of unitary divisors of the smallest cubefull exponentially odd number that is divisible by n. %H A369759 Amiram Eldar, <a href="/A369759/b369759.txt">Table of n, a(n) for n = 1..10000</a> %F A369759 a(n) = A034448(A356192(n)). %F A369759 Multiplicative with a(p) = p^3 + 1, a(p^e) = p^e + 1 for an odd e >= 3, and a(p^e) = p^(e+1) + 1 for an even e. %F A369759 a(n) >= A034448(n), with equality if and only if n is cubefull exponentially odd number (A335988). %F A369759 Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-3) - 1/p^(2*s-2) - 1/p^(3*s-5) + 1/p^(4*s-5) - 1/p^(4*s-3)). %F A369759 Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = (zeta(4)*zeta(6)/zeta(2)) * Product_{p prime} (1 - 1/p^6 + 1/p^11 - 1/p^12) = 0.65813930591740259189... . %t A369759 f[p_, e_] := p^If[OddQ[e], Max[e, 3], e+1] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A369759 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i,1]^if(f[i,2]%2, max(f[i,2], 3), f[i,2] + 1));} %Y A369759 Cf. A034448, A335988, A356192, A365480, A369757, A369758. %Y A369759 Cf. A013661, A013662, A013664. %K A369759 nonn,easy,mult %O A369759 1,2 %A A369759 _Amiram Eldar_, Jan 31 2024