cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369759 The sum of unitary divisors of the smallest cubefull exponentially odd number that is divisible by n.

This page as a plain text file.
%I A369759 #8 Feb 02 2024 11:01:51
%S A369759 1,9,28,9,126,252,344,9,28,1134,1332,252,2198,3096,3528,33,4914,252,
%T A369759 6860,1134,9632,11988,12168,252,126,19782,28,3096,24390,31752,29792,
%U A369759 33,37296,44226,43344,252,50654,61740,61544,1134,68922,86688,79508,11988,3528,109512
%N A369759 The sum of unitary divisors of the smallest cubefull exponentially odd number that is divisible by n.
%H A369759 Amiram Eldar, <a href="/A369759/b369759.txt">Table of n, a(n) for n = 1..10000</a>
%F A369759 a(n) = A034448(A356192(n)).
%F A369759 Multiplicative with a(p) = p^3 + 1, a(p^e) = p^e + 1 for an odd e >= 3, and a(p^e) = p^(e+1) + 1 for an even e.
%F A369759 a(n) >= A034448(n), with equality if and only if n is cubefull exponentially odd number (A335988).
%F A369759 Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-3) - 1/p^(2*s-2) - 1/p^(3*s-5) + 1/p^(4*s-5) - 1/p^(4*s-3)).
%F A369759 Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = (zeta(4)*zeta(6)/zeta(2)) * Product_{p prime} (1 - 1/p^6 + 1/p^11 - 1/p^12) = 0.65813930591740259189... .
%t A369759 f[p_, e_] := p^If[OddQ[e], Max[e, 3], e+1] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A369759 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i,1]^if(f[i,2]%2, max(f[i,2], 3), f[i,2] + 1));}
%Y A369759 Cf. A034448, A335988, A356192, A365480, A369757, A369758.
%Y A369759 Cf. A013661, A013662, A013664.
%K A369759 nonn,easy,mult
%O A369759 1,2
%A A369759 _Amiram Eldar_, Jan 31 2024