This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369763 #7 Jan 31 2024 08:07:28 %S A369763 9,8,7,7,1,4,8,4,0,0,4,4,9,3,7,6,3,7,7,4,0,2,3,0,6,8,6,7,0,6,3,9,3,4, %T A369763 9,3,5,1,9,0,1,0,7,5,6,7,0,3,9,5,6,2,7,1,4,4,9,9,3,6,6,1,2,5,1,9,0,8, %U A369763 1,8,5,0,7,8,1,8,2,9,8,6,5,2,6,6,0,0,7,6,4,7,5,2,3,9,4,3,1,0,4,3,6,5,9,3,6 %N A369763 Decimal expansion of the asymptotic mean of the ratio A000688(k)/A038538(k). %C A369763 The asymptotic mean of the ratio between the number of non-isomorphic abelian groups and the number of non-isomorphic semisimple rings of the same order. %C A369763 The constant A in Kühleitner's paper (1995). %C A369763 The ratio is 1 for all biquadratefree numbers (whose asymptotic density is A215267 = 0.923..., see A046100), and smaller than 1 otherwise. %H A369763 Manfred Kühleitner, <a href="http://dml.cz/dmlcz/129876">Comparing the number of Abelian groups and of semisimple rings of a given order</a>, Mathematica Slovaca, Vol. 45, No. 5 (1995), pp. 509-518. %F A369763 Equals Product_{p prime} (1 - 1/p)*(1 + Sum_{k>=1} A000041(k)/(A004101(k)*p^k)). %e A369763 0.98771484004493763774023068670639349351901075670395... %o A369763 (PARI) default(realprecision, 120); my(N=512, x='x+O('x^N), v); v = Vec(1/prod(k=1, sqrtint(N)+1, prod(j=1, 1+N\k^2, 1-x^(j*k^2)))); prodeulerrat((1-1/p)*vecsum(vector(N, i, numbpart(i-1)/(v[i]*p^(i-1))))) \\ after _Vaclav Kotesovec_ at A004101 %Y A369763 Cf. A000041, A000688, A004101, A038538, A046100, A215267. %K A369763 nonn,cons %O A369763 0,1 %A A369763 _Amiram Eldar_, Jan 31 2024