This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369766 #14 Jan 31 2024 13:11:06 %S A369766 1,1,1,2,6,24,115,662,4456,34323,298220,2885156,30760556,358379076, %T A369766 4530375092,61762729722,903311893770,14108704577103,234387946711329, %U A369766 4127027097703638,76774080851679152,1504640319524566870,30986929089570280955,669023741837953551188 %N A369766 Maximal coefficient of Product_{i=1..n} Sum_{j=0..i} x^(i*j). %p A369766 a:= n-> max(coeffs(expand(mul(add(x^(i*j), j=0..i), i=1..n)))): %p A369766 seq(a(n), n=0..23); # _Alois P. Heinz_, Jan 31 2024 %t A369766 Table[Max[CoefficientList[Product[Sum[x^(i j), {j, 0, i}], {i, 1, n}], x]], {n, 0, 23}] %o A369766 (PARI) a(n) = vecmax(Vec(prod(i=1, n, sum(j=0, i, x^(i*j))))); \\ _Michel Marcus_, Jan 31 2024 %o A369766 (Python) %o A369766 from collections import Counter %o A369766 def A369766(n): %o A369766 c = {0:1,1:1} %o A369766 for i in range(2,n+1): %o A369766 d = Counter() %o A369766 for k in c: %o A369766 for j in range(0,i*i+1,i): %o A369766 d[j+k] += c[k] %o A369766 c = d %o A369766 return max(c.values()) # _Chai Wah Wu_, Jan 31 2024 %Y A369766 Cf. A000140, A025591, A052335. %K A369766 nonn %O A369766 0,4 %A A369766 _Ilya Gutkovskiy_, Jan 31 2024