This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369767 #13 Jan 31 2024 13:11:21 %S A369767 1,1,2,6,31,231,2347,29638,449693,7976253,162204059,3722558272, %T A369767 95221978299,2687309507102,82967647793153,2782190523572392, %U A369767 100715040802229833,3914979746952224303,162662679830709439637,7194483479557973730982,337519906320930133470189 %N A369767 Maximal coefficient of Product_{i=1..n} Sum_{j=0..n} x^(i*j). %p A369767 a:= n-> max(coeffs(expand(mul(add(x^(i*j), j=0..n), i=1..n)))): %p A369767 seq(a(n), n=0..20); # _Alois P. Heinz_, Jan 31 2024 %t A369767 Table[Max[CoefficientList[Product[Sum[x^(i j), {j, 0, n}], {i, 1, n}], x]], {n, 0, 20}] %o A369767 (PARI) a(n) = vecmax(Vec(prod(i=1, n, sum(j=0, n, x^(i*j))))); \\ _Michel Marcus_, Jan 31 2024 %o A369767 (Python) %o A369767 from collections import Counter %o A369767 def A369767(n): %o A369767 c = {j:1 for j in range(n+1)} %o A369767 for i in range(2,n+1): %o A369767 d = Counter() %o A369767 for k in c: %o A369767 for j in range(0,i*n+1,i): %o A369767 d[j+k] += c[k] %o A369767 c = d %o A369767 return max(c.values()) # _Chai Wah Wu_, Jan 31 2024 %Y A369767 Cf. A000041, A025591, A077047. %K A369767 nonn %O A369767 0,3 %A A369767 _Ilya Gutkovskiy_, Jan 31 2024