This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369770 #12 Jan 31 2024 19:13:20 %S A369770 1,1,8,387,192832,1348952000,142641794707200,271057611231886800384, %T A369770 10679112895658933205816311808,9866210328276596971591655994333069312, %U A369770 238373589086269734817383263830485997977600000000,166142193793387680126634957823414405189312889036472320000000 %N A369770 a(n) is the maximal coefficient in the expansion of Product_{k=1..n} (1+k*x)^k. %p A369770 b:= proc(n) b(n):= `if`(n=0, 1, expand(b(n-1)*(1+n*x)^n)) end: %p A369770 a:= n-> max(coeffs(b(n))): %p A369770 seq(a(n), n=0..11); # _Alois P. Heinz_, Jan 31 2024 %o A369770 (PARI) a(n)=vecmax(Vec(prod(k=1,n,(1+k*x)^k))); %o A369770 vector(20,n,a(n-1)) %o A369770 (Python) %o A369770 from collections import Counter %o A369770 from math import comb %o A369770 def A369770(n): %o A369770 c = {0:1} %o A369770 for k in range(1,n+1): %o A369770 d = Counter(c) %o A369770 for j in c: %o A369770 a = c[j] %o A369770 for i in range(1,k+1): %o A369770 d[j+i] += comb(k,i)*k**i*a %o A369770 c = d %o A369770 return max(c.values()) # _Chai Wah Wu_, Jan 31 2024 %Y A369770 Cf. A065048 (maximal coefficient in Product_{k=1..n} (1+k*x) ). %K A369770 nonn %O A369770 0,3 %A A369770 _Joerg Arndt_, Jan 31 2024