This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369774 #14 Feb 01 2024 14:59:27 %S A369774 1,1,1,2,3,8,13,63,167,1227,5240,46958,297080,3108808,26714243, %T A369774 325635647,3535022425,49403859787,646713449897,10221697892707, %U A369774 156049674957354,2756431502525358,48028121269507891,940216720983170113,18359095114316009613 %N A369774 Maximal coefficient of (1 - x) * (1 - x - x^2) * ... * (1 - x - x^2 - ... - x^n). %t A369774 Table[Max[CoefficientList[Product[(1 - Sum[x^j, {j, 1, i}]), {i, 1, n}], x]], {n, 0, 24}] %o A369774 (PARI) a(n) = vecmax(Vec(prod(k=1, n, 1 - sum(i=1, k, x^i)))); \\ _Michel Marcus_, Feb 01 2024 %o A369774 (Python) %o A369774 from collections import Counter %o A369774 def A369774(n): %o A369774 c = {0:1} %o A369774 for k in range(1,n+1): %o A369774 d = Counter(c) %o A369774 for j in c: %o A369774 a = c[j] %o A369774 for i in range(1,k+1): %o A369774 d[j+i] -= a %o A369774 c = d %o A369774 return max(c.values()) # _Chai Wah Wu_, Feb 01 2024 %Y A369774 Cf. A000140, A039909, A086376, A369773. %K A369774 nonn %O A369774 0,4 %A A369774 _Ilya Gutkovskiy_, Jan 31 2024