cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369774 Maximal coefficient of (1 - x) * (1 - x - x^2) * ... * (1 - x - x^2 - ... - x^n).

This page as a plain text file.
%I A369774 #14 Feb 01 2024 14:59:27
%S A369774 1,1,1,2,3,8,13,63,167,1227,5240,46958,297080,3108808,26714243,
%T A369774 325635647,3535022425,49403859787,646713449897,10221697892707,
%U A369774 156049674957354,2756431502525358,48028121269507891,940216720983170113,18359095114316009613
%N A369774 Maximal coefficient of (1 - x) * (1 - x - x^2) * ... * (1 - x - x^2 - ... - x^n).
%t A369774 Table[Max[CoefficientList[Product[(1 - Sum[x^j, {j, 1, i}]), {i, 1, n}], x]], {n, 0, 24}]
%o A369774 (PARI) a(n) = vecmax(Vec(prod(k=1, n, 1 - sum(i=1, k, x^i)))); \\ _Michel Marcus_, Feb 01 2024
%o A369774 (Python)
%o A369774 from collections import Counter
%o A369774 def A369774(n):
%o A369774     c = {0:1}
%o A369774     for k in range(1,n+1):
%o A369774         d = Counter(c)
%o A369774         for j in c:
%o A369774             a = c[j]
%o A369774             for i in range(1,k+1):
%o A369774                 d[j+i] -= a
%o A369774         c = d
%o A369774     return max(c.values()) # _Chai Wah Wu_, Feb 01 2024
%Y A369774 Cf. A000140, A039909, A086376, A369773.
%K A369774 nonn
%O A369774 0,4
%A A369774 _Ilya Gutkovskiy_, Jan 31 2024