This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369791 #15 Feb 03 2024 10:15:32 %S A369791 1,1,1,3,8,22,70,262,1088,5076,26490,146542,896402,5662622,39826304, %T A369791 279072864,2232912264,17866212198,153323343990,1379920982310, %U A369791 13115759159982,131158174385100 %N A369791 a(n) is the maximal coefficient of (1 + x^a(1)) * (1 + x^a(1) + x^a(2)) * ... * (1 + x^a(1) + x^a(2) + ... + x^a(n-1)). %t A369791 a[n_] := a[n] = Max[CoefficientList[Product[(1 + Sum[x^a[j], {j, 1, i}]), {i, 1, n - 1}], x]]; Table[a[n], {n, 0, 15}] %o A369791 (Python) %o A369791 from itertools import islice %o A369791 from collections import Counter %o A369791 def A369791_gen(): # generator of terms %o A369791 c, a = {0:1}, [] %o A369791 while True: %o A369791 a.append(max(c.values())) %o A369791 yield a[-1] %o A369791 d = Counter(c) %o A369791 for k in c: %o A369791 for b in a: %o A369791 d[k+b] += c[k] %o A369791 c = d %o A369791 A369791_list = list(islice(A369791_gen(),10)) # _Chai Wah Wu_, Feb 01 2024 %Y A369791 Cf. A000140. %K A369791 nonn,more %O A369791 0,4 %A A369791 _Ilya Gutkovskiy_, Feb 01 2024 %E A369791 a(16)-a(20) from _Alois P. Heinz_, Feb 01 2024 %E A369791 a(21) from _Chai Wah Wu_, Feb 01 2024