This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369796 #27 Mar 04 2024 10:33:34 %S A369796 1,1,0,1,3,13,64,406,2737,23044,200509,2078460,22323513,275402437, %T A369796 3501602483,50310672046,739235942264,12084285146335,202054808987101, %U A369796 3703410393626031,69269248667062892,1409725495837854024,29169764518508360709,651568557906956269430 %N A369796 Number of permutations of [n] whose fixed points sum to n. %H A369796 Alois P. Heinz, <a href="/A369796/b369796.txt">Table of n, a(n) for n = 0..450</a> %H A369796 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a> %F A369796 a(n) = Sum_{k>=0} A000166(n-k)*A008289(n,k). %F A369796 a(n) = A369596(n,n). %e A369796 a(0) = 1: the empty permutation. %e A369796 a(1) = 1: 1. %e A369796 a(3) = 1: 213. %e A369796 a(4) = 3: 1432, 2314, 3124. %e A369796 a(5) = 13: 13542, 15243, 21435, 23415, 24135, 31425, 34125, 34215, 41235, 42351, 43125, 43215, 52314. %e A369796 a(6) = 64: 123564, 123645, 132654, 134652, 136254, ..., 542136, 542316, 621435, 625413, 625431. %p A369796 g:= proc(n) option remember; `if`(n=0, 1, n*g(n-1)+(-1)^n) end: %p A369796 b:= proc(n, i, m) option remember; `if`(n>i*(i+1)/2, 0, %p A369796 `if`(n=0, g(m), b(n, i-1, m)+b(n-i, min(n-i, i-1), m-1))) %p A369796 end: %p A369796 a:= n-> b(n$3): %p A369796 seq(a(n), n=0..23); %Y A369796 Main diagonal of A369596. %Y A369796 Cf. A000142, A000166, A008289, A331518. %K A369796 nonn %O A369796 0,5 %A A369796 _Alois P. Heinz_, Mar 02 2024