This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369807 #15 Feb 02 2024 16:14:51 %S A369807 1,0,0,0,1,7,28,84,211,476,1029,2276,5384,13594,35371,91667,232681, %T A369807 577710,1413462,3442498,8414484,20717963,51346109,127678961,317496621, %U A369807 787941379,1950774874,4821609252,11910608942,29432604429,72787392898,180131835001 %N A369807 Expansion of 1/(1 - x^4/(1-x)^7). %C A369807 Number of compositions of 7*n-4 into parts 4 and 7. %H A369807 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-34,21,-7,1). %F A369807 a(n) = A369815(7*n-4) for n > 0. %F A369807 a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 34*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 7. %F A369807 a(n) = Sum_{k=0..floor(n/4)} binomial(n-1+3*k,n-4*k). %o A369807 (PARI) my(N=40, x='x+O('x^N)); Vec(1/(1-x^4/(1-x)^7)) %o A369807 (PARI) a(n) = sum(k=0, n\4, binomial(n-1+3*k, n-4*k)); %Y A369807 Cf. A099253, A369805, A369806, A369808, A369809. %Y A369807 Cf. A369815. %K A369807 nonn %O A369807 0,6 %A A369807 _Seiichi Manyama_, Feb 01 2024